화학공학소재연구정보센터
Macromolecular Research, Vol.21, No.9, 1036-1041, September, 2013
Biodegradable stereocomplex polylactide having flexible ε-caprolactone unit
E-mail:
Stereocomplex formation between poly(L-lactide-co-ε-caprolactone) (PLLCL) and poly(D-lactide-co-ε-caprolactone) (PDLCL) is known to be disturbed when their molecular weights increase to >105 g/mol. Here, Strong and biodegradable stereocomplexes of copolymers (S-PLCL) were studied using a supercritical fluid and co-solvent system. Mechanical properties such as tensile strength were ∼2.5 times increased due to high degree of stereocomplex than those of PLGA20. The addition of the flexible ε-caprolactone units to the polylactide increased its thermal stability which significantly enhanced 100% degree of stereocomplex after 2nd melt processing through DSC due to the increased mobillity of the polylactide’s chains. The degradation behavior of resulting biodegradable S-PLCL showed slow degradation with increasing CL content in 0.13 M, pH 4.3 phosphate buffers.
  1. Ikada Y, Jamshidi K, Tsuji H, Hyon SH, Macromolecules, 20, 904 (1987)
  2. Tsuji H, Hyon SH, Ikada Y, Macromolecules, 24, 5657 (1991)
  3. Tsuji H, Ikada Y, Polymer, 40(24), 6699 (1999)
  4. Fukushima K, Chang YH, Kimura Y, Macromol. Biosci., 7, 829 (2007)
  5. Radano CP, Baker GL, Smith MR, J. Am. Chem. Soc., 122(7), 1552 (2000)
  6. Tsuji H, Ikada Y, Macromolecules, 26, 6918 (1993)
  7. Lee BC, Kuk YM, J. Chem. Eng. Data, 47(2), 367 (2002)
  8. Purnama P, Lim SH, Jung Y, Kim SH, Macromol. Res., 1, 1 (2012)
  9. Singh L, Kumar V, Ratner BD, Biomaterials, 25, 2611 (2004)
  10. Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R, Biomaterials, 17, 1417 (1996)
  11. Fujiwara T, Yamaoka T, Kimura Y, Wynne KJ, Biomacromolecules, 6(4), 2370 (2005)
  12. Purnama P, Kim SH, Macromolecules, 43, 1137 (2009)
  13. Yan C, Luo Y, Zhao X, J. Funct. Mater., 6 (2008)
  14. Commandeur S, Van Beusekom HMM, Van Der Giessen WIMJ, J. Int. Cardiol., 19, 500 (2006)
  15. Wu Q, Wang Y, Chen GQ, Artif. Cells Blood Substitut. Biotechnol., 37, 1 (2009)
  16. Vert M, Mauduit J, Li S, Biomaterials, 15, 1209 (1994)
  17. Li SM, Garreau H, Vert M, Petrova T, Manolova N, Rashkov I, J. Appl. Polym. Sci., 68(6), 989 (1998)
  18. Garkhal K, Verma S, Jonnalagadda S, Kumar N, J. Polym. Sci. A: Polym. Chem., 45(13), 2755 (2007)
  19. Martin JR, Johnson JF, Cooper AR, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., 8, 57 (1972)
  20. Quynh TM, Mitomo H, Zhao L, Tamada M, J. Appl. Polym. Sci., 110(4), 2358 (2008)
  21. Sarasua JR, Rodriguez NL, Arraiza AL, Meaurio E, Macromolecules, 38(20), 8362 (2005)
  22. Biela T, Polanczyk I, Wiley Online Library, 240, 47 (2006)
  23. Purnama P, Jung Y, Kim SH, Macromolecules, 45(9), 4012 (2012)
  24. Tsuji H, Del Carpio CA, Biomacromolecules, 4(1), 7 (2003)
  25. Tsuji H, Biomaterials, 24, 537 (2003)
  26. Tsuji H, Ikarashi K, Biomaterials, 25, 5449 (2004)
  27. Lee WK, Iwata T, Gardella JA, Langmuir, 21(24), 11180 (2005)
  28. Loo SCJ, Ooi CP, Chiang Y, Boey F, Biomaterials, 26, 3809 (2005)
  29. Tsuji H, Polymer, 41(10), 3621 (2000)
  30. Li SM, Dobrzynski P, Kasperczyk J, Bero M, Braud C, Vert M, Biomacromolecules, 6(1), 489 (2005)