Automatica, Vol.49, No.8, 2489-2495, 2013
Robust exact uniformly convergent arbitrary order differentiator
An arbitrary order differentiator that, in the absence of noise, converges to the true derivatives of the signal after a finite time independent of the initial differentiator error is presented. The only assumption on a signal to be differentiated (n - 1) times is that its n-th derivative is uniformly bounded by a known constant. The proposed differentiator switches from a newly designed uniform differentiator to the classical High-Order Sliding Mode (HOSM) differentiator. The Uniform part drives the differentiation error trajectories into a compact neighborhood of the origin in a time that is independent of the initial differentiation error. Then, the HOSM differentiator is used to bring the differentiation error to zero in (C) 2013 Elsevier Ltd. All rights reserved.