Current Microbiology, Vol.67, No.2, 218-225, 2013
Salicylate Degradation by the Fungal Plant Pathogen Sclerotinia sclerotiorum
The fungal plant pathogen Sclerotinia sclerotiorum was studied to determine its ability to degrade salicylate, an important defense-signaling molecule in plants. S. sclerotiorum D-E7 was grown at 25 A degrees C in an undefined medium (50 ml) containing minerals, 0.1 % soytone, 50 mM MES buffer (pH 6.5), 25 mM glucose, and 1 mM salicylate. Glucose, oxalate, and salicylate concentrations were monitored by HPLC. S. sclerotiorum D-E7 was found to be active in salicylate degradation. However, salicylate alone was not growth supportive and, at higher levels (10 mM), inhibited glucose-dependent growth. Biomass formation (130 mg [dry wt] of mycelium per 50 ml of undefined medium), oxalate concentrations (similar to 10 mM), and culture acidification (final culture pH approximated 5) were essentially the same in cultures grown with or without salicylate (1 mM). Time-course analyses revealed that salicylate degradation and glucose consumption were complete after 7 days of incubation and was concomitant with growth. Trace amounts of catechol, a known intermediate of salicylate metabolism, were detected during salicylate degradation. Overall, these results indicated that S. sclerotiorum has the ability to degrade salicylate and that the presence of low levels of salicylate did not affect growth or oxalate production by S. sclerotiorum.