화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.5, No.2, 263-273, April, 1994
SHS법에 의한 티타늄 수소화물 합성 및 티타늄 분말 제조에 관한 연구
A Study on the Synthesis of Titanium Hydride by SHS(Self-propagating High-temperature Synthesis) Method and the Preparation of Titanium Powder
초록
SHS법에 의해 Ti-sponge(99.67%)를 수소화반응시켜 티타늄 수소화물을 합성한 다음, 이 분말을 탈수소시켜 티타늄 금속 분말을 제조하였다. 티타늄 수소화물 합성과정에서는 티타늄에 흡장된 수소의 양에 따라 티타늄 수소화물의 입도가 변하였으며, 수소의 압력이 높을수록, 연소파 전파 후 반응시간이 길수록 입도는 감소하였다. 탈수소 반응에서는 탈수소 시간이 길수록 탈수소된 티타늄 입자들이 소결 및 부분 용융되어 입도가 커지는 것으로 나타났다.
Titanium powder prepared by dehydrogenating the titanium hydride which is synthesized by reacting Ti-sponge (99.67% ) with hydrogen using the self-propagating high-temperature synthesis method. In the synthesis of titanium hydride, the particle size of the product was found dependent on the amount of hydrogen incorporated into the titanium such that the particle size of titanium hydride decreased with increasing hydrogen pressure and after-burn tlme. In the dehydrogenation process, as the dehydrogenation time increase, the particle size of titanium powder increased due to partial melting and sintering of titanium particles.
  1. Crider JF, Process Ceram. Eng. Sci., 4 (1983)
  2. 이희철, "연소합성의 화학 - 재료합성·가공의 순간 프로세스-," p. 19, 반도출판사 (1993)
  3. Merzhanov AG, Moscow Vestnik Akademi Nauk SSSR, 10, 76 (1976)
  4. West AR, "Solid State Chemistry and Its Applications," p. 37, John Wiley & Sons, New York (1984)
  5. Munir ZA, Am. Ceram. Bull., 67(2), 342 (1988)
  6. Hurd DT, "An Introduction to Chemistry of the Hydrides," p. 181, John Wiley & Sons, New York (1952)
  7. Kolachev BA, "Hydrogen Embrittlement of Nonferrous Metals," p. 4, Wiener Bindery, Jerusalem (1966)
  8. Gibb TRP, "Progress in Inorganic Chemistry," p. 317, III, Interscience Publishers Inc., New York, N.Y. (1962)