화학공학소재연구정보센터
Journal of Materials Science, Vol.48, No.22, 7960-7968, 2013
Fabrication, thermal, and dielectric properties of self-passivated Al/epoxy nanocomposites
The current paper reports the effects of an epoxide-functionalized, silane surface-treated, self-passivated aluminum (Al) nanoparticles on the glass transition, morphology, thermal conductivity, dielectric properties of an epoxy composite. The surface modification of the Al nanoparticles improved the dispersion of the filler, as well as the glass transition temperature, thermal conductivity, and dielectric properties of the epoxy composites. The epoxy/Al nanocomposites showed a dielectric constant transition concentration. The dielectric constant and dissipation factor increased when the Al particle loading exceeded the critical content but gradually decreased with the frequency. The epoxy nanocomposites containing 15 % by weight Al nanoparticles have a high thermal conductivity and a high dielectric constant but a low dissipation factor. The enhancements in the thermal and dielectric properties of the epoxy nanocomposites show potential for future engineering applications.