Journal of Physical Chemistry B, Vol.117, No.21, 6455-6465, 2013
Sum Frequency Generation Vibrational Spectroscopy of Cholesterol in Hybrid Bilayer Membranes
The assignment of the vibrational spectrum of cholesterol is surprisingly incomplete for such a fundamental molecule. To improve our understanding, a new investigation of the spectra of cholesterol in the C-H stretching region has been undertaken using the surface specific technique of Sum Frequency Generation (SFG) vibrational spectroscopy and the complementary technique of Reflection Absorption Infrared Spectroscopy (RAIRS). They were used to record the spectra of monolayers of cholesterol in hybrid bilayer membranes (HBMs). In addition to cholesterol, spectra were recorded of HBMs comprising monolayers of the partially deuterated cholesterol isotopologues d(6)-cholesterol and d(7)-cholesterol, and the cholesterol analogues cholestanol and androstanol to aid assignment of the spectra. Monolayers of each of the five molecules were used to form the distal leaflet of HBMs with the proximal leaflet consisting of a monolayer of deuterated mercaptoundecanoic acid (d-MUA) self-assembled on a gold substrate. Although cholesterol has five methyl groups and eleven methylene groups, by using molecules in which certain groups were either deuterated or entirely absent, it was possible to assign vibrational bands to specific sets of methyl or methylene groups either in the alkyl chain or sterol ring system of the molecule. Analysis of the spectra showed that the alkyl chains of cholesterol are orientated away from the substrate, which is opposite to their orientation in HBMs when the proximal leaflet is a hydrophobic self-assembled monolayer of octadecane thiol (ODT) adsorbed on gold. Additionally it was shown that in the d-MUA HBM, the alpha-face of the cholesterol ring is inclined toward the layer of air above the film, and the beta-face is inclined toward the gold substrate.