화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.117, No.22, 6711-6717, 2013
Interaction of G-Quadruplex with RecA Protein Studied in Bulk Phase and at the Single-Molecule Level
As in the human genome there are numerous repeat DNA sequences to adopt into non-B DNA structures such as hairpin, triplex, Z-DNA, G-quadruplex, and so on, an understanding of the interaction between DNA repair proteins and a non-B DNA forming sequence is very important. In this regard, the interaction between RecA protein and human telomeric 5'-TAGGG-(TTAGGG)(3)-TT-3' sequence and the G-quadruplex formed from this sequence has been investigated in bulk phase and at the single-molecule level. The RecA@ssDNA filament, which is formed by the interaction between RecA protein and a G-rich sequence, was dissociated by the addition of K+ ions, and the dissociated G-rich sequence was quickly folded to a G-quadruplex structure, indicating that the G-quadruplex structure is more favorable than the RecA@ssDNA filament in the presence of K+ ions. In addition, we demonstrate that the conformation of the G-quadruplex, which is heterogeneous in the absence of RecA, converged to the specific G-quadruplex with one double-chain-reversal loop upon association of RecA protein.