Journal of the American Chemical Society, Vol.135, No.19, 7378-7385, 2013
Initial Light Soaking Treatment Enables Hole Transport Material to Outperform Spiro-OMeTAD in Solid-State Dye-Sensitized Solar Cells
Efficient solid state dye-sensitized solar cells (sDSCs) were obtained using a small hole transport material, MeO-TPD (N,N,N',N'-tetrakis(4-methoxyphenyl)benzidine), after an initial light soaking treatment. It was discovered that the light soaking treatment for the MeO-TPD based solar cells is essential in order to achieve the high efficiency (4.9%), which outperforms spiro-OMeTAD based sDSCs using the same dye and device preparation parameters. A mechanism based on Li+ ion migration is suggested to explain the light soaking effect. It was observed that the electron lifetime for the MeO-TPD based sDSC strongly increases after the light soaking treatment, which explains the higher efficiency. After the initial light soaking treatment the device efficiency remains considerably stable with only 0.2% decrease after around 1 month (unsealed cells stored in dark).