화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.135, No.33, 12297-12304, 2013
Extensive Reprogramming of the Genetic Code for Genetically Encoded Synthesis of Highly N-Alkylated Polycyclic Peptidomimetics
Cyclic structures can increase the proteolytic stability and conformational rigidity of peptides, and N-alkylation of the peptide backbone can make peptides more cell-permeable and resistant to proteolysis. Therefore, cyclic N-alkyl amino acids are expected to be useful building blocks to increase simultaneously these pharmacological properties of peptides. In this study, we screened various cyclic N-alkyl amino acids for their ribosomal incorporation into peptides and identified cyclic N-alkyl amino acids that can be efficiently and successively incorporated. We also demonstrated genetic code reprogramming for reassigning 16 NNU codons to 16 different cyclic N-alkyl amino acids with high fidelity to synthesize highly N-alkylated polycyclic peptidomimetics and an mRNA-displayed library of completely N-alkylated polycyclic peptidomimetics by using our recently developed TRAP (transcription/translation coupled with association of puromycin linker) display. In vitro selection from a highly diverse library of such completely N-alkylated polycyclic peptidomimetics could become a powerful means to discover small-molecule ligands such as drug candidates that can be targeted to biomolecules inside living cells.