Journal of the Institute of Energy, Vol.73, No.496, 149-159, 2000
Incineration of wool-scouring sludge in a vertical-axis-spinning fluidised-bed incinerator
The main purpose of this research was to investigate the feasibility of incineration of wool-scouring sludge in a novel vertical-axis-rotating fluidised bed (RFB). The experiment was carried out in a RFB with an internal diameter (ID) of 200 mm and height of 50 mm. A cold test was first conducted to investigate the fluidisation performance of the RFB via parameters such as the bubbling, gas distribution, bed shape and pressure drop. The tumbling phenomena was observed in the bed, and this effectively enhanced the axial mixing. The appropriate range of bed thickness, rotating speed and sand particle size were identified to ensure the full fluidisation and reduce the particle elutriation. Four wool-scouring sludges from different processes were incinerated in the RFB. With 5% support methane, all sludges with a maximum moisture up to 70% as received could be successfully burned in the RFB at rotating speeds of 200 and 300 rpm. The combustion was found to be intense with a high efficiency due to the good turbulence and mixing in the RFB. The effects of moisture content, feeding rate and rotating speed were investigated. It was found that for sludge (sample B2) with a moisture content of 5%, the combustion could be sustained at a bed surface temperature of around 500 degreesC arid freeboard temperature of 900 degreesC without the support of methane. To investigate the special advantages of swirling flow in the RFB on the combustion and particle elutriation, a CFD model was used. In the calculated flow field, two flow regions were identified, viz, the outer free vortex region and the forced vortex flow near the axis. Recirculation and turbulence of flow were generated by the pressure gradients and shear layers, respectively. The modelling of premixed methane and air combustion, which was used to simulate the volatile burning in the freeboard of the RFB, showed two high-temperature zones near the exit and at the bottom of the chamber near the core in accordance with the flow field. The high combustion efficiency was again predicted in the model, reflecting that the burning was effective due to good mixing and turbulence in the RFB.