화학공학소재연구정보센터
Langmuir, Vol.29, No.21, 6476-6484, 2013
Influence of Anions and Alkyl Chain Lengths of N-Alkyl-n-(R)-12-Hydroxyoctadecyl Ammonium Salts on Their Hydrogels and Organogels
The self-assembly and gelating characteristics of a set of N-alkyl-(R)-12-hydroxyoctadecylammonium salts (n-HOA-X, where n = 0-6, 18 is the length of the alkyl chain on nitrogen, X = Cl, n = 3, and X = Br, NO3, and BF4) are described. Solid-solid phase transitions were observed for powders of n-HOA-Cl, and orthorhombic-type crystal packing arrangements and lattice spacings were calculated from X-ray diffractograms at 22 degrees C. The diffractogram of 3-HOA-Br indicates the presence of more than one morph at room temperature, and that of 3-HOA-I corresponds to a lamellar packing arrangement. Differences in the molecular packing arrangements of 3-HOA-X are reflected in their gelation abilities. The melting temperatures (T-gel) of the hydrogels of 3-HOA-Br are higher than those of 3-HOA-Cl at the same concentrations, and 3-HOA-I failed to gelate any of the investigated liquids. 3-HOA-NO3 gelated only water and CCl4 and 3-HOA-BF4 formed only hydrogels. Plots of changes in conductivities of the 3-HOA-X salts (where X = Cl, Br, NO3 and BF4) as a function of temperature were used to calculate the critical aggregation concentrations (CGCs). Because the CGCs from the 'falling drop' method are nearly the same as those from the conductivity measurements, aggregation, nucleation, and gelation must occur within a very narrow 3-HOA-X concentration range. To values of 2 wt 96 3-HOA-Cl hydrogels (prepared by fast cooling of the sol phase) increased upon adding KCl up to 0.1 M. The effects can be attributed principally to the chloride anion rather than its cation partners. The properties of the hydrogels of 3-HOA-X do not follow the Hofmeister ranking rule. The variations in the counterions afford detailed insight into the behavior of 3-HOA-X in their neat solids and assemblies in gels as well as the processes accompanying gel formation in water and organic liquids.