Langmuir, Vol.29, No.28, 8799-8808, 2013
The Fractal Aggregation of Asphaltenes
This paper discusses time-resolved small-angle neutron scattering results that were used to investigate asphaltene structure and stability with and without a precipitant added in both crude oil and model oil. A novel approach was used to isolate the scattering from asphaltenes that are insoluble and in the process of aggregating from those that are soluble. It was found that both soluble and insoluble asphaltenes form fractal clusters in crude oil and the fractal dimension of the insoluble asphaltene clusters is higher than that of the soluble clusters. Adding heptane also increases the size of soluble asphaltene clusters without modifying the fractal dimension. Understanding the process of insoluble asphaltenes forming fractals with higher fractal dimensions will potentially reveal the microscopic asphaltene destabilization mechanism (i.e., how a precipitant modifies asphaltene-asphaltene interactions). It was concluded that because of the polydisperse nature of asphaltenes, no well-defined asphaltene phase stability envelope exists and small amounts of asphaltenes precipitated even at dilute precipitant concentrations. Asphaltenes that are stable in a crude oil precipitant mixture are dispersed on the nanometer length scale. An asphaltene precipitation mechanism is proposed that is consistent with the experimental findings. Additionally, it was found that the heptane-insoluble asphaltene fraction is the dominant source of small-angle scattering in crude oil and the previously unobtainable asphaltene solubility at low heptane concentrations was measured.