Langmuir, Vol.29, No.29, 9098-9103, 2013
Electrocapillary Instability of Magnetic Fluid Peak
This Article presents an experimental study of the capillary electrostatic instability occurring under the effect of a constant electric field on a magnetic fluid individual peak. The peaks under study occur at disintegration of a magnetic fluid layer applied on a flat electrode surface under the effect of a perpendicular magnetic field. The electrocapillary instability shows itself as an emission of charged drops jets from the peak point in direction of the opposing electrode. The charged drops emission repeats periodically and results in the peak shape pulsations. It is shown that a magnetic field affects the electrocapillary instability occurrence regularities and can stimulate its development. The critical electric and magnetic field strengths at which the instability occurs have been measured; their dependence on the peak size is shown. The hysteresis in the system has been studied; it consists in that the charged drops emission stops at a lesser electric (or magnetic) field strength than that of the initial occurrence. The peak pulsations frequency depending on the magnetic and electric field strengths and on the peak size has been measured.