화학공학소재연구정보센터
Separation Science and Technology, Vol.48, No.10, 1500-1509, 2013
Preparation of a Macroporous Silica-Based Multidentate Soft-Ligand Material and its Application in the Adsorption of Palladium and the Others
To separate Pd(II), a macroporous silica-based soft-ligand 2,6-bis(5,6-di(iso-butyl)-1,2,4-triazine-3-yl)pyridine (BDIBTP) material, BDIBTP/SiO2-P, was synthesized by vacuum treatment. It was a multidentate chelating composite prepared by impregnation and immobilization of BDIBTP and 1-octanol molecules into the pores of the macroporous SiO2-P particles with a mean diameter of 50 mu m. 1-Octanol was used to modify BDIBTP through intermolecular interaction force. The adsorption of some typical fission products Zr(IV), Pd(II), La(III), Y(III), Ru(III), Rh(III), and Mo(VI) contained in highly active liquid waste (HLW) onto the BDIBTP/ SiO2-P materials was investigated. It was carried out by examining the effects of contact time and the concentration of HNO3 in the range of 0.3M7.0M. BDIBTP/SiO2-P showed excellent adsorption ability and high selectivity for Pd(II) over all of the tested metals. It was ascribed to the effective complexation of Pd(II) with BDIBTP/SiO2-P. Consideration of the complexation of BDIBTP for minor actinides MAs(III), the possibility and feasibility of effective partitioning of Pd(II) and MAs(III) simultaneously from a simulated HLW were discussed. A new concept process entitled MPS for the MA(III) and Pd(II) Separation has been proposed.