화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.5, No.5, 889-898, October, 1994
생분해성 지방족 폴리에스테르에 관한 연구(III) - Copolyesterethylene/EVA(VAl5%) 블랜드의 상용성
Study on the Biodegtadable Aliphatic Polyester(III) : Compatibility of Copolyesterethy1ene/EVA (VAl5%) Blends
초록
생분해성 고분자의 실용화 검토를 위하여 생분해성 copolyesterethylene(CPEE)과 vinlyacete(VA)기가 15%인 범용 ethylenevinylacetate(EVA)를 0∼100%까지 10% 간격으로 전조성에 걸퍽 용융 블랜드하였다. 용융 블랜드한 시료의 녹는점 변화와 결정화 온도를 시차 주사 열량계로 측정하여 miscibility에 관하여 고찰하였으며 만능시험기를 이용하여 인장강도 및 신장률을 측정하였다. 녹는점 변화와 결정화 온도로부터 CPEE 조성이 10%와 90%일 때 약간의 miscibility를 보였으며, 인장강도값으로부터는 CPEE 조성이 50∼80%를 제외한 조성에서 유용한 compatibility를 갖는 것을 알았다. SEM 관찰을 통한 각조성에서의 형태학적 모습으로부터 이들 상용성의 결과를 확인하였으며, 또한 CPEE/EVA 블랜드의 생분해성은 미생물접종 전후의 시편의 변화를 Image analyzer로 관찰함으로써 확인하였다.
Melt blends of copolyesterethylene(CPEE) and ethylene vinylacetate copolymer(EVA) with 15% vinylacetate content were prepared in the ratio of 0 to l00% CPEE with 10% interval for the purpose of obtaining useful biodegradable polymer system. Miscibility behavior of melt blend samples has been studied by observing the melting temperature change and cold crystallization temperature with differential scanning calorimetry. From the results of thermal analysis, it was shown that each l0% blend composition of CPEE and EVA had the partially miscibility. Useful compatibility has been observed in all blend composition except the samples of 50∼80 % CPEE composition from the mechanical property study. Compatibility of these blend has been also observed with scanning electron microscopy. Biodegradability of CPEE/EVA blends has been evaluated by observing the change of specimen with Image analyzer before and after the inoculation with specific microorganism.
  1. Schnabel W, "Polymer Degradation: Principles and Practical Applications," Hanser International, Munchen (1981)
  2. Darby RT, Koplan AM, Appl. Microbiol., 16, 900 (1968)
  3. Tokiwa Y, Suzuki T, J. Ferment. Technol., 52, 393 (1974)
  4. Tokiwa Y, Suzuki T, Ando T, J. Appl. Polym. Sci., 24, 1701 (1979) 
  5. Potts JE, Clendinning RA, Ackart WB, Am. Chem. Soc. Polym. Prepr., 3, 629 (1972)
  6. Bell JP, U.S. NTIS. AD-A Rep., No. 009577 (1979)
  7. Griffin GJL, Adv. Chem. Ser., 134, 159 (1974)
  8. Otey FH, Doane WM, "Starch in Plastics," ed. P.L. Whistler, J.N. Bemiller, and E.F. Paschall, Academic Press, N.Y. (1984)
  9. Gassner F, Owen AJ, Polymer, 33, 2508 (1922) 
  10. Kumagai Y, Doi Y, J. Environ. Polym. Degrad., 1, 81 (1993) 
  11. Darby RT, Koplan AM, Appl. Microbiol., 16, 900 (1968)
  12. Tokiwa Y, Suzuki T, J. Appl. Polym. Sci., 26, 444 (1981)
  13. Kang HJ, Park TW, Kim YJ, Lee CG, Polym.(Korea), in submitted
  14. Kang HJ, "Study on the Synthesis and Evaluation of the Biodegradable Polymer(I)," Research Report of the Ministry of Commerce and Industry (1992)
  15. Kang HJ, "Study on the Synthesis andn Evaluation of the Biodegradable Polymer(II)," Research Report of the Ministry of Trade, Industry and Energy (1993)
  16. Japan Patent, 91-229723 (1991)
  17. Nishi T, Wang TT, Macromolecules, 8, 909 (1975) 
  18. Wang TT, Nishi T, Macromolecules, 10, 421 (1977)
  19. Shultz AR, Young AL, J. Appl. Polym. Sci., 28, 1677 (1983) 
  20. MacGregor EA, GreenWood CT, "Polymer in Nature," John Wiley & Sons, London (1982)
  21. Gattiglia E, Turturro A, Pedemonte E, J. Appl. Polym. Sci., 41, 1411 (1990)