Nature Materials, Vol.11, No.11, 942-947, 2012
Nanostructured high-energy cathode materials for advanced lithium batteries
Nickel-rich layered lithium transition-metal oxides, LiNi1-xMxO2 (M = transition metal), have been under intense investigation as high-energy cathode materials for rechargeable lithium batteries because of their high specific capacity and relatively low cost(1-3). However, the commercial deployment of nickel-rich oxides has been severely hindered by their intrinsic poor thermal stability at the fully charged state and insufficient cycle life, especially at elevated temperatures(1-6). Here, we report a nickel-rich lithium transition-metal oxide with a very high capacity (215 mAh g(-1)), where the nickel concentration decreases linearly whereas the manganese concentration increases linearly from the centre to the outer layer of each particle. Using this nano-functional full-gradient approach, we are able to harness the high energy density of the nickel-rich core and the high thermal stability and long life of the manganese-rich outer layers. Moreover, the micrometre-size secondary particles of this cathode material are composed of aligned needle-like nanosize primary particles, resulting in a high rate capability. The experimental results suggest that this nano-functional full-gradient cathode material is promising for applications that require high energy, long calendar life and excellent abuse tolerance such as electric vehicles.