Journal of the Korean Industrial and Engineering Chemistry, Vol.5, No.6, 1036-1043, December, 1994
Silane 가교 PE의 가교조건에 따른 열적특성 변화에 관한 연구
Studios on the Thermal Properties of Silane Crosslinked Polyethylene Prepared by Various Crosslinking Conditions
초록
폴리에칠렌을 가교시키는 방법으로서 silane에 의한 가교를 행하였다. Silane 가교는 압출기를 이용하여 200∼210℃ 용융온도에서 반응압출시켜 vinyltrimethoxysilane(VTMOS)를 PE주쇄에 그라프트시킨 후, 3가지 silane 가교조건(80℃ 온수가교, 80℃ air oven 가교, 상온대기방치 가교)으로써 물 또는 수분에 노출시켜 가교를 완성하였다. Silane 가교된 폴리에칠렌의 결정 용융온도(Tm)의 변화, 밀도의 변화, 가교의 속도 거동을 측정하여 수지의 silane 가교조건에 따른 열적특성 변화를 연구하였다. Silane 가교는 용융상태의 고온에서 가교시키는 과산화물 가교와는 달리 고체상태에서 가교가 일어나기 때문에 그 가교조건에 따라 결정용융온도, 결정도 및 결정성장, 가교속도, 밀도의 변화가 다르고 수지의 종류도 열적특성에 영향을 미침을 알았다. 상온대기방치 가교된 silane 가교 linear low density polyehylene(LLDPE)은 결정이 성장되면서 서서히 가교반응이 진행됨에 따라 DSC에서 2차 용융 피크가 생성되지 않았으며, 재결정화하면 결합된 가교 site의 결정화 방해현상에 의해 결정용융온도가 낮아지는 거동을 나타내었다.
The silane crosslinking method was applied for the crosslinking of polyethylene (PE). Crosslinking of PE was performed by, first grafting vinyltrimethoxysilane(VTMOS) to the main chain of PE using an extruder at 200∼210℃, followed by exposure to three different silane crosslinking conditions (1. immersed in 80℃ water, 2. at 80℃ air forced convection oven, 3. exposed to air at room temperature ). The thermal characteristic changes of PE resins with respect to the silane crosslinking conditions were studied by measuring the crystalline melting temperature, density and crosslinking reaction rate. Because silane crosslinking was carried out at solid stats crystalline melting temperature, crystallinity, crystal growth rate, crosslinking reaction rate and the change in the density of silane crosslinked PE were affected by crosslinking condition and the type of base resin. The properties of silane crosslinked PE were different from those of Peroxide crosslinked PE which was crosslinked at the molten state. It was found, from the result of DSC analysis that silane crosslinked linear low density polyethylene(LLDPE) crosslinked at room temperature had no secondary melting peak because the crosslinking reaction proceeds slowly as the crystalline grows. After crystallization, the melting point of PE was lowered by crystalline interruption of crosslinked site.
- Charrier JM, "Polymeric Materials and Processing," Hanser, 62 (1991)
- Saechtling H, "Plastics Handbook," Hanser, 9 (1987)
- Chanda M, Roy SK, "Plastics Technology Handbook," 34 (1987)
- Vornokov MG, Mileshkevich VP, Yuzhelevkii YA, "The Siloxane Bond," Consultants Breau, 20 (1978)
- Rosato DV, Rosato DV, "Plastics Processing Data Handbook," Van Nostrand Reinhold, 9 (1990)
- Socrates G, "Infrared Characteristic Group Frequencies," John Wiley & Sons, 126 (1980)
- Tomas B, Bowreg M, Wire J., May, 88 (1977)
- Bullen DJ, Capaccio G, Frye CJ, Br. Polym. J., 21, 117 (1989)
- Currat C, Wire J., June, 60 (1984)
- Ultsch S, Fritz HG, Kunststoffe, 79, 1051 (1989)
- Topcik B, Rubber Plast. News, 14 (1990)
- Stohrer B, Kurrer H, Stengler R, Weis G, Kunststoffe, 79, 1165 (1989)
- Kelnar I, Schatz M, J. Appl. Polym. Sci., 48, 669 (1993)
- Land VR, Easterblook EK, Polym. Eng. Sci., 18, 1135 (1978)
- Bloor R, Plast. Technol., Feb., 83 (1981)
- Scott HG, Humphries JF, Mod. Plast., 50, 82 (1973)
- Sumitomo Bakelite Co., Ltd., The World Electrotechnical Congress, Jun. (1977)
- Hochstrasser UP, Wire Asia, Jun. (1985)
- Narkis M, Tzur A, Vaxman A, Polym. Eng. Sci., 25, 857 (1985)
- Salyer IO, Davison JE, J. Appl. Polym. Sci., 28, 2903 (1983)
- Yamada A, Shiokaramatsu Y, Yamashita S, Makromol. Chem., 186, 2275 (1985)