화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.5, No.6, 1044-1055, December, 1994
지르콘의 탄소열환원에 의한 ZrC/SiC의 합성
Preparation of ZrC/SiC by Carbothermal Reduction of Zircon
초록
Ar 또는 Ar/H2 가스유통(100∼500m1/min)하에서 ZrSiO4/C계 및 ZrSiO4/Al/C계로부터 ZrC/SiC 복합분체의 합성을 1600℃ 온도범위 내에서 시도하고, 이의 생성기구, 생성속도 및 분체특성을 검토하였다. ZrSiO4/C계에서는 1400℃ 이상에서 ZrO2(s)와 SiO(g)가 각각 탄소와 경쟁반응하여 ZrC 및 SiC를 생성하였다.. ZrC생성을 위한 겉보기활성화에너지는 약 18.5kcal/mol(1400-1600℃)이었다. 한편 ZrSiO4/Al/C계에서는 1200℃ 이상에서 ZrO(g)가 Al(1, g) 및 탄소와 반응하여 ZrC를 생성하였으며,1300℃ 이상에서는 SiO(g)가 Al(1, g) 및 탄소와 환원-탄화반응하여 SiC를 생성하였다. 1600℃, 5시간 반응으로 얻은 생성물은 평균입경 21.8㎛을 갖는 분말로서 ZrC의 격자정수는 4.679Å, 결정자크기는 640Å이었으며 SiC의 격자정수는 4.135Å, 결정자크기는 540Å 정도이었다.
The preparation of ZrC/SiC mixed powders from ZrSiO4/C and ZrSiO4/Al/C systems was attempted in the temperature range below 1600℃ under Ar or Ar/H2 gas flow(100-500ml/min ). The formation mechanism and kinetics of ZrC/SiC were suggested and the resultant powders were characterized. In ZrSiO4/C system, ZrC and SiC were formed by competitive reaction of ZrO2(g) and SiO(g) with carbon at temperature higher than 1400℃. The apparent activation energy for the formation of ZrC was approximately 18.5kca1/mol(1400-1600℃). In ZrSiO4/Al/C system, ZrC was formed by reaction of ZrO(g) with Al(1, g) and carbon at temperature tougher than 1200℃, and SiC was formed by reduction-carbonization of SiO(g) with Al(1, g) and carbon at temperature higher than 1300℃. The products obtained at 1600℃ for 5h consisted of ZrC with lattice constant of 4.679Å and crystallite size of 640Å, and SiC with lattice constant of 4.135Å and crystallize size of 500Å. And also, the mean particle size was about 21.8㎛.
  1. Curtis CE, Sowman HG, J. Am. Ceram. Soc., 36, 190 (1953) 
  2. Storms KK, "The Refractory Carbides," 225-246, Academic Press, New York and London (1970)
  3. Toth LE, "Transition Metal Carbides and Nitrides," 1-10, Academic Press, New York and London (1971)
  4. Lee JG, Culter IB, Bull. Am. Ceram. Soc., 54, 195 (1975)
  5. Lee JG, "Carbide and Nitride Ceramics by Carbothermal Reduction of Silica," Ph.D. Dissertation, University of Utah (1976)
  6. Jong BW, Bull. Am. Ceram. Soc., 58, 788 (1979)
  7. Wei GC, J. Am. Ceram. Soc., 66, C111 (1983) 
  8. Suyama Y, Marra RM, Haggerty JS, Bowen HK, Bull. Am. Ceram. Soc., 64, 1356 (1985)
  9. Samsonov GV, Vitryanyuk VK, "Refractory Carbides," ed. by G.V. Samsonov, 79-88, Plenum Pub., Co., New York (1974)
  10. Klug HP, Alexander LE, "X-ray Diffraction Procedures," 505-565, John Wiley & Sons, New York and London (1974)
  11. Cutler RA, Rigtrup KM, J. Am. Ceram. Soc., 75, 36 (1992) 
  12. Gadalla A, Elmasry M, Kongkachuichay P, J. Mater. Res., 7, 2585 (1992)
  13. Miller PD, Lee JC, Cutler IB, J. Am. Ceram. Soc., 62, 147 (1979)
  14. Pultz WW, Hertl W, Trans. Faraday Soc., 62, 2499 (1966) 
  15. Bechtold BC, Cutler IB, J. Am. Ceram. Soc., 63, 271 (1980) 
  16. Klinger N, Strauss EL, Komarek KL, J. Am. Ceram. Soc., 49, 369 (1966) 
  17. 박홍채, "Carbothermal Reduction에 의한 탄화물계 내화원료의 합성," 27-35, 산업과학기술연구소 보고서 (1993)
  18. Okada S, Atoda T, Yogyo-Kyokai-Shi, 88, 242 (1980)
  19. Ikeda T, Mori T, Iida T, Mitamura T, Yogyo-Kyokai-Shi, 93, 17 (1885)