화학공학소재연구정보센터
Clean Technology, Vol.19, No.3, 191-200, September, 2013
태양광을 활용한 물분해 수소생산용 광촉매재료
Photocatalysts for Hydrogen Production from Solar Water Splitting
E-mail:
초록
미래의 무한.청정 에너지원으로 고려되고 있는 태양에너지를 활용하여 수소를 생산할 수 있는 광촉매재료에 대한 연구가 활발히 진행되고 있다. 본 총설에서는 태양광을 이용한 물분해 수소생산용 광촉매재료들에 대하여 알아보고, 현재까지 보고된 다양한 광촉매재료의 특성들을 검토하고자 한다. 또한, 다양한 광촉매재료를 활용하여 수소생산 효율을 높이기 위해서 시행되었던 촉매재료 개질 방법들을 통하여 향후 지속적으로 진행될 연구방향을 모색해 보고자 한다. 각각의 광촉매재료들이 활성을 가질 수 있는 빛의 영역을 알아보고, 광촉매 작용에 필수적인 광원, 광밀도, 파장영역 등의 중요성에 대해서도 토론한다.
Researches on developing photocatalyst materials for hydrogen production from solar water splitting attract great attentions due to the unlimited and clean characteristics of the solar energy. In this review, photocatalysts used for hydrogen production from the solar water splitting are discussed in terms of material characteristics. In addition, various modification techniques applied to the photocatalysts for improving hydrogen production efficiency are summarized. Finally, light characteristics such as intensity, illumination density and wavelength cutoff are also discussed for the importance of hydrogen production rate.
  1. Winter CJ, Int. J. Hydrogen Energy., 34, S1 (2009)
  2. Fujishima A, Honda K, Nature., 238, 37 (1972)
  3. Zaleska A, Recent Patents Eng., 2, 157 (2008)
  4. Fuerte MDHA, Maira AJ, Martinez-Arias A, Fernandez-Garcia M, Conesa JC, Soria J, Chem. Commun., 24, 2718 (2001)
  5. Anpo M, Pure Appl. Chem., 72, 1787 (2000)
  6. Ohno T, Mitsui T, Matsumura M, Chem. Lett., 32(4), 364 (2003)
  7. Liu Y, Chen X, Li J, Burda C, Chemosphere., 61, 11 (2005)
  8. Yu JC, Zhang L, Zheng Z, Zhao J, Chem. Mater., 15, 2280 (2003)
  9. Hirai T, Suzuki K, Komasawa I, J. Colloid Interface Sci., 244(2), 262 (2001)
  10. Chatterjee D, Mahata A, Appl. Catal. B: Environ., 33(2), 119 (2001)
  11. Zhou W, Zheng Y, Wu G, Appl. Surf. Sci., 252, 1387 (2006)
  12. Ai G, Sun WT, Zhang YL, Peng LM, Chem. Commun., 47, 6608 (2011)
  13. In SI, Nielsen MG, Vesborg PCK, Hou Y, Abrams BL, Henriksen TR, Hansen O, Chorkendorff I, Chem. Commun., 47, 2613 (2011)
  14. Zhang S, Zhang S, Peng F, Zhang H, Liu H, Zhao H, Electrochem. Commun., 13, 861 (2011)
  15. Zhu W, Liu X, Liu HQ, Tong DL, Yang JY, Peng JY, J. Am. Chem. Soc., 132(36), 12619 (2010)
  16. Chen C, Cai W, Long M, Zhou B, Wuu Y, Wuu D, Feng Y, ACS Nano., 4, 6425 (2010)
  17. Yu J, Ma T, Liu G, Cheng B, Dalton Trans., 40, 6635 (2011)
  18. Fan W, Lai Q, Zhang Q, Wang Y, J. Phys. Chem. C., 115, 10694 (2011)
  19. Lightcap IV, Kosel TH, Kamat PV, Nano Lett., 10, 577 (2010)
  20. Janaky C, Rajeshwar K, de Tacconi NR, Chanmanee W, Huda MN, Catal. Today., 199, 53 (2013)
  21. Li XZ, Li FB, Chemosphere., 48, 1103 (2002)
  22. Zoua JJ, He H, Cui L, Du HY, Int. J. Hydrogen Energy., 32, 1762 (2007)
  23. Li XZ, Li FB, Environ. Sci. Technol., 35, 2381 (2001)
  24. Carneiro JO, Teixeira V, Portinha A, Dupak L, Magalhaes A, Coutinho, Vacuum., 78, 37 (2005)
  25. Zhu JF, Zheng W, Bin HE, Zhang JL, Anpo M, J. Mol. Catal. A-Chem., 216(1), 35 (2004)
  26. Lee MS, Hong SS, Mohseni M, J. Mol. Catal. A-Chem., 242(1-2), 135 (2005)
  27. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science., 293, 269 (2001)
  28. Wu ZB, Dong F, Zhao WR, Guo S, J. Hazard. Mater., 157(1), 57 (2008)
  29. Treschev SY, Chou PW, Tseng YH, Wang JB, Perevedentseva EV, Cheng CL, Appl. Catal. B: Environ., 79(1-2), 8 (2008)
  30. Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier WF, Appl. Catal. B: Environ., 32(4), 215 (2001)
  31. Takeshita K, Yamakata A, Ishibashi T, Onishu H, Nishijima K, Ohno T, J. Photochem.Photobiol., 177, 269 (2006)
  32. Anpo M, Pure Appl. Chem., 72, 1787 (2000)
  33. Yu JG, Zhou MH, Cheng B, Zhao XJ, J. Mol. Catal. A-Chem., 246(1-2), 176 (2006)
  34. Sakthivel S, Janczarek M, Kisch H, J. Phys. Chem. B, 108(50), 19384 (2004)
  35. Pore V, Heikkila M, Ritala M, Leskela M, Areva S, J. Photobiol. Photochem. A Chem., 177, 68 (2006)
  36. Wu ZB, Dong F, Zhao WR, Guo S, J. Hazard. Mater., 157(1), 57 (2008)
  37. Irie H, Watanabe Y, Hashimoto K, Chem. Lett., 32(8), 772 (2003)
  38. Chen H, Bai S, Chang C, Chang WD, J. Nanoparticle Res., 9, 365 (2007)
  39. Bard AJ, J. Photochem., 10, 59 (1979)
  40. Kudo A, Kato H, Chem. Lett., 26, 421 (1997)
  41. Kudo A, Hijii S, Chem.Lett., 26, 1103 (1999)
  42. Kato H, Matsudo N, Kudo A, Chem. Lett., 33(9), 1216 (2004)
  43. Sasaki Y, Iwase A, Kato H, Kudo A, J. Catal., 259(1), 133 (2008)
  44. Lo CC, Huang CW, Liao CH, Wu JCS, Inter. J. Hydrogen Energy., 35, 1523 (2010)
  45. Bae SW, Ji SM, Hong SJ, Jang JS, Lee JS, Inter. J. Hydrogen Energy., 34, 3243 (2009)
  46. Sasaki Y, Nemoto H, Saito K, Kudo A, J. Phys. Chem. C., 113, 17536 (2009)
  47. Higashi M, Abe R, Ishikawa A, Takata T, Ohtani B, Domen K, Chem. Lett., 37(2), 138 (2008)
  48. Abe R, Takata T, Sugihara H, Domen K, Chem.Commun., 30, 3829 (2005)
  49. Djellal L, Bellal B, Trari M, Energy Procedia., 6, 46 (2011)
  50. Leisch JE, Bhattacharya RN, Teeter G, Turner JA, Sol. Energy Mater. Sol. Cells, 81(2), 249 (2004)
  51. Panthani MG, Akhavan V, Goodfellow B, Schmidtke JP, Dunn L, Dodabalapur A, Barbara PF, Korgel BA, J. Am. Chem. Soc., 130(49), 16770 (2008)
  52. Wark SE, Hsia CH, Luo Z, Son DH, J. Mater. Chem., 21, 11618 (2011)
  53. Xu J, Luan CY, Tang YB, Chen X, Zapien JA, Zhang WJ, Kwong HL, Meng XM, Lee ST, Lee CS, ACS Nano., 4, 6064 (2010)
  54. Paracchino A, Laporte V, Sivula K, Gratzel M, Thimsen E, Nat. Mater., 10(6), 456 (2011)
  55. Chen L, Shet S, Tang H, Wang H, Deutsch T, Yan Y, Turner J, Al-Jassim M, J. Mater. Chem., 20, 6962 (2010)
  56. Takanabe K, Kamata K, Wang X, Antonietti M, Kubota J, Domen K, Phys. Chem. Chem. Phys., 12, 13020 (2010)
  57. Zhang Y, Mori T, Niu L, Ye J, Energy Environ. Sci., 4, 4517 (2011)
  58. Xiang Q, Yu J, Jaroniec M, J. Phys. Chem. C., 115, 7355 (2011)
  59. Kailasam K, Epping JD, Thomas A, Losse S, Junge H, Energy Environ. Sci., 4, 4668 (2011)
  60. Zhang J, Grzelczak M, Hou Y, Maeda K, Domen K, Fu X, Antonietti M, Wang X, Chem. Sci., 3, 443 (2012)
  61. Hu JS, Ren LL, Guo YG, Liang HP, Cao AM, Wan LJ, Bai CL, Angew.Chem. Int. Ed., 44, 1269 (2005)
  62. Reber JF, Meier KJ, J. Phys. Chem., 88, 5903 (1984)
  63. Kudo A, Sekizawa M, AAPG Bull., 58, 241 (1999)
  64. Xing C, Zhang Y, Yan W, Guo L, Int. J. Hydrogen Energy., 31, 2018 (2006)
  65. Zhang K, Jing D, Xing C, Guo L, Int. J. Hydrogen Energy., 32, 4685 (2007)
  66. Zhang W, Zhong Z, Wang Y, Xu R, J. Phys. Chem. C., 112, 17635 (2008)
  67. Arai T, Senda SI, Sato Y, Takahashi H, Shinoda K, Jeyadevan B, Tohji K, Chem. Mater., 20, 1997 (2008)
  68. Shen S, Zhao L, Zhou Z, Guo L, J. Phys. Chem. C., 112, 16148 (2008)
  69. Liu G, Zhao L, Ma L, Guo L, Catal. Commun., 9, 126 (2008)
  70. Zhang W, Xu R, Int. J. Hydrogen Energy., 34, 8495 (2009)
  71. Yu J, Zhang J, Jaroniec M, Green Chem., 12, 1611 (2010)
  72. Zhang J, Jiaguo Y, Zhang Y, Li Q, Gong JR, Nano Lett., 11, 4774 (2011)
  73. Thimsen E, Le Formal F, Gratzel M, Warren SC, Nano Lett., 11, 35 (2010)