화학공학소재연구정보센터
Clean Technology, Vol.19, No.3, 306-312, September, 2013
이산화탄소 농도에 따른 드레이톤 탄의 저온 차-이산화탄소 가스화반응 모델링 비교
Comparative Modeling of Low Temperature Char-CO2 Gasification Reaction of Drayton Coal by Carbon Dioxide Concentration
E-mail:,
초록
드레이톤 탄으로부터 제조된 차(char)의 850 ℃ 등온조건 가스화 반응에서 반응기체인 이산화탄소-질소 혼합기체의 이산화탄소 농도가 반응속도에 미치는 영향에 대해 알아보았다. 저온 가스화 반응성을 높이기 위해 탄산칼륨을 사용하였다. 이산화탄소의 농도가 증가할수록 차-이산화탄소(char-CO2) 가스화 반응성은 좋으며 전환율 증가 속도는 고농도에서는 일정하게 유지되었다. 가스화 반응성은 증가하였으며, 70% 이상의 고농도 조건에서는 일정하게 유지되었다. 기-고체 반응모델 중에서 shrinking core model (SCM)과 shrinking core model (SCM), modified volumetric reaction model (MVRM)을 비교하였다. 선형 회귀를 통해 얻은 상관계수 값은 저농도에서는 SCM이 VRM보다 높은 반면, 고농도에서는 VRM이 SCM보다 높은 값을 보였다. 모든 농도에서 MVRM의 상관계수 값은 다른 모델들 보다 가장 높은 값을 보였다.
We investigated the effects of the concentration of carbon dioxide on the char-CO2 gasification reaction under isothermal conditions of 850 ℃ using the Drayton coal. Potassium carbonate was used to improve the low-temperature gasification reactivity. The enhancement of carbon dioxide concentration increased the gasification rate of char, while gasification rate reached a saturated value at the concentration of 70%. The best CO2 concentration for gasification is determined to be 70%. We compared the shrinking core model (SCM), volumetric reaction model (VRM) and modified volumetric reaction model (MVRM) of the gas-solid reaction models. The correlation coefficient values, by linear regression, of SCM are higher than that of VRM at low concentration. While the correlation coefficients values of VRM are higher than that of SCM at high concentration. The correlation coefficient values of MVRM are the highest than other models at all concentration.
  1. IEA, “World Energy Outlook,” International Energy Agency (2011)
  2. Ochoa J, Cassanello MC, Bonelli PR, Cukierman AL, Fuel Process. Technol., 74(3), 161 (2001)
  3. Ye DP, Agnew JB, Zhang DK, Fuel, 77(11), 1209 (1998)
  4. Trommer D, Steinfeld A, Energy Fuels, 20(3), 1250 (2006)
  5. Sun ZQ, Wu JH, Zhang DK, Energy Fuels, 22(4), 2160 (2008)
  6. Miura K, Hashimoto K, Silveston PL, Fuel., 68(11), 1461 (1989)
  7. Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25(1), 160 (1985)
  8. Fujikawa K, Hayashi A, Tanaka H, Kanazuka T, Kanno T, Kodera T, Appl. Catal., 50(1), 199 (1989)
  9. Hashimoto K, Miura K, Xu JJ, Watanabe A, Masukami H, Fuel., 65(4), 489 (1986)
  10. Sha XZ, Kyotani T, Tomita A, Fuel., 69(12), 1564 (1990)
  11. Wen CY, Ind. Eng. Chem., 60(9), 34 (1968)
  12. Gavalas GR, Am. Inst.Chem. Eng. J., 26(4), 577 (1980)
  13. Song BH, Kang SK, Kim SD, Korean J. Chem. Eng., 30(6), 749 (1992)
  14. Guzman GL, Wolf EE, Ind. Eng. Chem. Process Des. Dev., 21(1), 25 (1982)
  15. Lee WJ, Kim SD, Fuel., 74(9), 1387 (1995)
  16. Mochida I, Sakanishi K, Fuel, 79(3), 221 (2000)
  17. Probstein RF, Hicks RE, Synthetic fuels, Dover Publications: Incorporated (2006)
  18. Spiro CL, McKee DW, Kosky PG, Lamby EJ, Fuel., 62(2), 180 (1983)
  19. Walker PL., Shelef M, Anderson RA, In Chemistry and Physics of Carbon, Walker PL, Ed., Vol. 4, Marcel Dekker, New York, N.Y., 287 (1968)
  20. McKee DW, Carbon., 20(1), 59 (1982)
  21. Sams DA, Talverdian T, Shadman F, Fuel., 64(9), 1208 (1985)
  22. Li S, Cheng Y, Fuel., 74(3), 456 (1995)
  23. Ishida M, Wen CY, Am. Inst. Chem.Eng. J., 14(2), 311 (1968)
  24. Wen WY, Catal. Rev.-Sci. Eng., 22(1), 1 (1980)
  25. Wood BJ, Fleming RH, Wise H, Fuel., 63(11), 1600 (1984)
  26. McKee DW, Fuel., 62(2), 170 (1983)
  27. Kim JR, Kwon TW, Kim SD, HWAHAK KONGHAK, 25(4), 379 (1987)
  28. Choi YK, Moon SH, Lee HI, Lee WY, Rhee HK, HWAHAK KONGHAK, 30(3), 292 (1992)
  29. LEE IC, Korean J. Chem. Eng., 4(2), 194 (1987)
  30. Hippo EJ, Jenkins RG, Walker PL, Fuel,, 58(5), 338 (1979)
  31. Choi YK, Moon SH, Lee HI, Lee WY, Rhee HK, HWAHAK KONGHAK, 30(3), 292 (1992)
  32. Bak YC, Yang HS, Son JE, J. Korean Inst. Chem. Eng., 29(3), 323 (1991)
  33. Bhatia SK, Perlmutter DD, Am. Inst. Chem. Eng. J., 26(3), 379 (1980)
  34. Dutta S, Wen CY, Belt RJ, Ind. Eng. Chem.Process Des. Dev., 16(1), 20 (1977)
  35. Ergun S, J. Phys. Chem., 60(4), 480 (1956)
  36. Ahn DH, Gibbs BM, Ko KH, Kim JJ, Fuel., 80(11), 1651 (2001)
  37. Zhang LX, Huang JJ, Fang YT, Wang Y, Energy Fuels, 20(3), 1201 (2006)
  38. Yasyerli N, Dogu T, Dogu G, Ar I, Chem. Eng. Sci., 51(11), 2523 (1996)
  39. Zhang LX, Huang JJ, Fang YT, Wang Y, Energy Fuels, 20(3), 1201 (2006)
  40. Choi YK, Moon SH, Lee HI, Lee WY, Rhee HK, HWAHAK KONGHAK, 30(3), 292 (1992)
  41. FUNG DPC, KIM SD, Korean J. Chem. Eng., 7(2), 109 (1990)
  42. Souza-Santos ML, Fuel., 68(12), 1507 (1989)
  43. Song BH, Kim SD, Fuel., 72(6), 797 (1993)