Applied Chemistry for Engineering, Vol.24, No.5, 489-493, October, 2013
이차전지 음극용 탄소 전극을 이용한 리튬이온 커패시터 연구
Study of Lithium Ion Capacitors Using Carbonaceous Electrode Utilized for Anode in Lithium Ion Batteries
E-mail:
초록
기존의 EDLC용 활성탄소 대신 리튬이차전지용 탄소류 음전극(천연흑연, 인조흑연, 하드카본, MCMB)을 이용해 리튬이온 커패시터를 구성하면 리튬의 층간 삽입반응으로 인해 기존의 물질보다 에너지 밀도가 큰 전극소재를 개발할 수 있을 것이다. 이 실험에서는 기존 리튬이차전지 음극용 탄소 물질을 대칭 전극으로 사용하여 코인형 커패시터를 제조하여 성능을 측정하였다. 또한 리튬을 미리 삽입시킨 탄소류 전극을 이용한 커패시터를 제조한 후 성능을 측정한 결과, 축전현상이 일어나는 것을 알 수 있었다. 즉 전해액에서 전하분리에 의한 리튬이온의 이동을 보충할 수 있다면 기존의 리튬이온은 탄소류 전극의 층간으로 확산되어 들어가 기존의 대칭성 탄소류 전극의 경우에 비해 축전 용량이 증가한다. 또한 표면적이 매우 큰 graphene oxide를 사용하여 위와 같이 실험한 결과 용량이 크게 나왔으며 이로부터 슈퍼커패시터 전극용 물질에는 높은 비표면적이 중요한 요소로 작용한다는 것을 알 수 있었다.
The most common carbonaceous anode materials of lithium ion batteries (natural graphite, artificial graphite, hard carbon, and mesocarbon microbeads) were utilized as an electrode in lithium ion capacitors. It could be able to enhance the energy density of capacitors due to the intercalation of lithium ion. In this work, the properties of capacitors using the symmetric electrode were measured by organizing coin cell typed capacitors. Also, we made other capacitors having pre-intercalated lithium ions at one side of the electrode. The results of electrochemical measurements for these capacitors show that the storage capacitance was appeared. In other words, if the migration of lithium ions is supplied continuously in the electrolytes, lithium ions can be diffused into the carbonaceous materials. And it results in the improvement of capacitance compared to only using symmetric carbonaceous electrodes. Also, we conducted the same measurement with graphene oxide having a the large specific area in the same condition. Herein, we recognized that the large specific area is extremely important for
supercapacitors.
Keywords:supercapacitors;electric double layer;electrode materials;Li ion;capacitance;carbonaceous materials
- Lu L, Han X, Li J, Hua J, Ouyang M, J. Power Sources., 226, 272 (2013)
- Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C, J. Power Sources., 208, 210 (2012)
- Krause A, Kossyrev P, Oljaca M, Passerini S, Winter M, Balducci A, J. Power Sources, 196(20), 8836 (2011)
- Gu HB, Kim JU, Song HW, Park GC, Park BK, Electrochim. Acta, 45(8-9), 1533 (2000)
- Jung MJ, Jeong EG, Kim S, Lee SI, Yoo JS, Lee YS, J.Fluorine Chem., 132, 1127 (2011)
- Sivakkumar SR, Pandolfo AG, Electrochim. Acta., 65, 280 (2012)
- Cao WJ, Zheng JP, J. Power Sources., 213, 180 (2012)
- Mukherjee R, Krishnan R, Lu TM, Koratkar N, Nano Energy., 1, 518 (2012)
- Dreyer DR, Park SJ, Bielawski CW, Ruoff RS, Chem. Soc. Rev., 39, 228 (2010)
- Kim IT, Egashira M, Yoshimoto N, Morita M, Electrochim. Acta, 56(21), 7319 (2011)
- Chandrasekaran R, Koh M, Yamauchi A, Ishikawa M, J. Power Sources, 195(2), 662 (2010)
- Du XA, Guo P, Song HH, Chen XH, Electrochim. Acta, 55(16), 4812 (2010)