Journal of Industrial and Engineering Chemistry, Vol.19, No.6, 1800-1804, November, 2013
Effect of copper loadings on product selectivities in microwave-enhanced degradation of phenol on alumina-supported copper oxides
E-mail:
Alumina-supported copper oxides catalysts were prepared using impregnation method and character-ized using XRD, SEM and BET. Catalytic activities in phenol removal from its aqueous solution (200 ppm) were studied using hydrogen peroxide as an oxidant under microwave irradiation. Effects of copper loadings, reaction temperatures (50 and 70 ℃) and pH (5 and 9) were studied. The high loading samples (9.14 wt%) exhibited 97% phenol removal efficiency corresponding to 90% total organic carbon (TOC) value. Lower loading samples (1 wt%) showed significantly lower phenol removals and inferior catalyst stability. At similar levels of phenol degradations, there was higher proportion of high molecular weight products or intermediates on 14 than on 1 wt% copper/Al2O3.
- Baboli MA, Environmental Toxicology and Pharmacology., 34, 826 (2012)
- Mu RX, Xu ZY, Li LY, Shao Y, Wan HQ, Zheng SR, J. Hazard. Mater., 176(1-3), 495 (2010)
- Rhokina EV, Repo E, Virkutyte J, Ultrasonics Sonochemistry., 17, 541 (2010)
- El-Naas MH, Al-Zuhair S, Makhlouf S, Chem. Eng. J., 160(2), 565 (2010)
- Lai TL, Lee CC, Huang GL, Shu YY, Wang CB, Appl. Catal. B: Environ., 78(1-2), 151 (2008)
- Lai TL, Yong KF, Yu JW, Chen JH, Shu YY, Wang CB, Journal of Hazardous Materials., 185, 366 (2011)
- Bi XY, Wang P, Jiang H, Xu HY, Shi SJ, Huang JL, Journal of Environmental Science., 19, 1510 (2007)
- Appleton TJ, Colder RI, Kingman SW, Lowndes IS, Read AG, Appl. Energy, 81(1), 85 (2005)
- Nuchter M, Ondruschka B, Bonrath W, Gum A, Green Chemistry., 6, 128 (2004)
- Sanchez-Prado L, Garcia-Jares C, Llompart M, Journal of Chromatography A., 1217, 2390 (2010)
- Liu M, Tang Y, Wang L, Hu YD, Jiao XQ, Huang WP, Chemical Research in Chinese Universities., 24, 285 (2008)
- Liotta LF, Gruttadauria M, Di Carlo G, Perrini G, Librando V, J. Hazard. Mater., 162(2-3), 588 (2009)
- Lopez-Munoz MJ, Arsuaga JM, Sotto A, Sep. Purif. Technol., 71(2), 246 (2010)
- Grabowska E, Reszczyn´ ska J, Zaleska A, Water Research., 46, 5453 (2012)
- Wu Q, Hu X, Yue PL, Zhao XS, Lu GQ, Appl. Catal. B: Environ., 32(3), 151 (2001)
- Castro IU, Sherrington DC, Fortuny A, Fabregat A, Stuber F, Font J, Bengoa C, Catal. Today, 157(1-4), 66 (2010)
- Kim SK, Kim KH, Ihm SK, Chemosphere., 68, 287 (2007)
- Atta AY, Jibril BY, Al-Waheibi TK, Al-Waheibi YM, Catalysis Communications., 26, 112 (2012)
- Fernandez-Garcia M, Rodriguez-Ramos I, Ferreira-Aparicio P, Guerrero-Ruiz A, J. Catal., 178(1), 253 (1998)
- Arena F, Giovenco R, Torre T, Venuto A, Parmaliana A, Appl. Catal. B: Environ., 45(1), 51 (2003)
- Santos A, Yustos P, Quintanilla A, Garcia-Ochoa F, Topics on Catalysis., 33, 181 (2005)