화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.6, 784-793, November, 2013
폴리아크릴로니트릴의 가수분해와 아미드화에 의한 열감응성 폴리(N-이소프로필아크릴아미드)의 합성과 특성분석
Synthesis and Characterization of Thermo-responsive Poly(N-isopropylacrylamide) via Hydrolysis and Amidation of Poly(acrylonitrile)
E-mail:
초록
폴리아크릴로니트릴(PAN) 섬유로 된 제품에 열감응 특성을 부여하기 위하여, PAN을 가수분해하여 카복실기를 생성시키고 이를 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride(EDC)와 N-히드록시석신이미드(NHS)를 촉매로 하여 이소프로필아민(IPA)과 반응시켜 열감응성 고분자인 폴리(N-이소프로필아크릴아미드)(PNIPAAm)로 전환시키는 방법에 대해 연구하였다. PAN을 알칼리 가수분해시킨 후 산 가수분해를 추가하여 카복실기 함량을 늘릴 수 있었다. 폴리아크릴산(PAA)과 IPA와의 아미드화 반응은 촉매인 EDC와 NHS의 양에 의존하며, PAA 단위가 약 53% 이상 PNIPAAm으로 전환되어야 하한임계용액온도(LCST) 거동을 나타냈다.
A two-step method for obtaining poly(N-isopropylacrylamide) (PNIPAAm) from poly(acrylonitrile) (PAN) was investigated in order to find a feasibility of imparting thermo-responsive property onto textile fiber materials. PAN was converted to poly(acrylic acid) (PAA) by hydrolysis at a first-step, and then PAA was converted to PNIPAAm at a second step via an amidation reaction of PAA with isopropylamine (IPA) in DMF medium using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) as catalysts. High content of carboxylic groups at the first step was obtained by the successive alkaline and acid hydrolysis of PAN. The degree of conversion of PAA to PNIPAAm at the second step was dependent on the amount of catalysts EDC and NHS. PNIPAAm converted from PAA through amidation reaction showed a lower critical solution temperature (LCST) behavior when the conversion was higher than about 53%.
  1. Liu F, Urban MW, Prog. Polym. Sci., 35, 33 (2010)
  2. Ahn JH, Jeon YS, Chung DJ, Kim JH, Polym.(Korea), 35(1), 94 (2011)
  3. Lim YH, Kim D, Lee DS, J. Appl. Polym. Sci., 64, 2647 (1990)
  4. Bajpai AK, Shukla SK, Bhanu S, Kankane S, Prog.Polym. Sci., 33, 1088 (2009)
  5. Hu JM, Liu SY, Macromolecules, 43(20), 8315 (2010)
  6. Liang L, Feng XD, Martin PFC, Peurrung LM, J. Appl. Polym. Sci., 75(14), 1735 (2000)
  7. Kucking D, Richter A, Arndt KF, Macromol. Mat. Eng., 144, 288 (2003)
  8. Weinhart M, Becherer T, Haag R, Chem. Commun., 47, 1553 (2011)
  9. Moon JR, Kim JH, Macromol. Res., 16(6), 489 (2008)
  10. Oh YJ, Lee G, Park SY, Polym.(Korea), 36(2), 223 (2012)
  11. Liu Y, Liu XY, Liu HJ, Cheng F, Chen Y, Macromol. Res., 20(6), 578 (2012)
  12. Kokufuta MK, Sato S, Kokufuta E, Colloid Polym. Sci., 16, 290 (2012)
  13. Nam I, Bea JW, Jee KS, Lee JW, Park KD, Yuk SH, Macromol. Res., 2, 10 (2002)
  14. Deshmukh MV, Vaidya AA, Kulkarni MG, Rajamohanan PR, Ganapathy S, Polymer, 41(22), 7951 (2000)
  15. Lee EM, Gwon SY, Ji BC, Kim SH, Fiber. Polym., 1, 12 (2011)
  16. Fathi M, Entezami AA, Ebrahimi A, Safa KD, Macromol.Res., 1, 21 (2013)
  17. Hashimoto K, Sakamoto J, Tanii H, Archives of Toxicology., 47, 179 (1981)
  18. Zhang Z, Sun R, Ma H, Fiber. Polym., 9, 551 (2008)
  19. Fanous J, Wegner M, Grimminger J, Andersen A, Buchmeiser MR, Chem. Mater., 23, 5024 (2011)
  20. Chiu HT, Lin JM, Cheng TH, Chou SY, Huang CC, J. Appl. Polym. Sci., 125, 616 (2012)
  21. Liu RX, Li Y, Tang HX, J. Appl. Polym. Sci., 83(7), 1608 (2002)
  22. Zhang C, Luo N, Hirt DE, Langmuir, 22(16), 6851 (2006)
  23. Dai J, Baker GL, Bruening ML, Anal. Chem., 78, 135 (2006)
  24. Mark HF, Bikales NM, Overberger CG, Menges G, “A to Amorphous Polymers”, in Encyclopedia of Polymer Science and Engineering, Kroschwitz JI, Editor, A Wiley-interscience Publication, John Wiley & Sons, 1, 211 (1985)
  25. Tropini V, Lens JP, Mulder WJ, Silvestre F, Industrial Crops and Products., 20, 281 (2004)
  26. Ko YG, Maa PX, J. Colloid Interface Sci., 330, 77 (2008)
  27. Lue SJ, Chen CH, Shih CM, J. Macromol. Sci. B., 50, 563 (2011)
  28. Zhang GJ, Meng H, Ji SL, Desalination, 242(1-3), 313 (2009)
  29. Ermakov IV, Rebrov AI, Litmanovich AD, Plate NA, Macromol. Chem. Phys., 201, 1415 (2000)
  30. Socrates G, Infrared and Raman Characteristic Group Frequencies, John Wiley & Sons, New York (2001)
  31. Jellinek HHG, Gordon A, J. Phys. Chem., 53, 996 (1948)