화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.25, No.4, 233-242, November, 2013
On the yield stress of complex materials
E-mail:
In the present work, the yield stress of complex materials is analyzed and modeled using the Bautista-Manero-Puig (BMP) constitutive equation, consisting of the upper-convected Maxwell equation coupled to a kinetic equation to account for the breakdown and reformation of the fluid structure. BMP model predictions for a complex fluid in different flow situations are analyzed and compared with yield stress predictions of other rheological models, and with experiments on fluids that exhibit yield stresses. It is shown that one of the main features of the BMP model is that it predicts a real yield stress (elastic solid or Hookean behavior) as one of the material parameters, the zero shear-rate fluidity, is zero. In addition, the transition to fluid-like behavior is continuous, as opposed to predictions of more empirical models.
  1. Abdali SS, Mitsoulis E, Markatos NC, J. Rheol., 36, 389 (1992)
  2. Barnes HA, J. Non-Newton. Fluid Mech., 81(1-2), 133 (1999)
  3. Bautista F, de Santos JM, Puig JE, Manero O, J. Non-Newton. Fluid Mech., 80(2-3), 93 (1999)
  4. Bingham EC, Fluidity and Plasticity., McGraw-Hill, New York. (1922)
  5. Calderas F, Reologia en flujo transitorio de la mezcla de nanocompuestos Pet-Pen- Montmorillonita, Ph.D. thesis, Division de estudios de Posgrado de la Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico. (2012)
  6. Calderas F, Sanchez-Solis A, Maciel A, Manero O, Macromol Symp., The transient flow of the PEN-Montmorillonite clay Nanocomposite (2009)
  7. Casson N, A flow equation for pigment oil suspensions of printing type ink, in Rheology of disperse System, Mill CC (ed.), Pergamon Press, Oxford. (1959)
  8. Caton F, Baravian C, Rheol. Acta, 47(5-6), 601 (2008)
  9. Cheng DCH, Yield stress: a time-dependent property and how to measure it, Report No. LR 540 (MH), Warren Spring Laboratory, Department of Industry, UK (1985)
  10. Evans ID, J. Rheol., 36, 1313 (1992)
  11. Garcia-Rojas B, Bautista F, Puig JE, Manero O, Phys. Rev E., 036313/1-036313-12., 80
  12. Herrera EE, Calderas F, Chavez AE, Manero O, J. Non-Newton. Fluid Mech., 165(3-4), 174 (2010)
  13. Herrera EE, Calderas F, Chavez AE, Manero O, Mena B, Rheol. Acta, 48(7), 779 (2009)
  14. Herschel WH, Bulkley T, Am. Soc. Test Proc., 26, 621 (1926)
  15. Houlsby GT, Puzrin AM, J. Rheol., 46(1), 113 (2002)
  16. Isayev A, Fan X, J. Rheol., 34, 35 (1990)
  17. Lipscomb GG, Denn MM, J. Non-Newton Fluid Mech., 14, 337 (1984)
  18. Oldroyd JG, Proc. Camb. Phil. Soc., 43, 100 (1947)
  19. Oldroyd JG, Proc. Roy. Soc. Lond. A., 200, 525 (1950)
  20. Papanastasiou TC, J.Rheol., 31, 385 (1987)
  21. Saramito P, J. Non-Newton. Fluid Mech., 145(1), 1 (2007)
  22. Saramito P, J. Non-Newton. Fluid Mech., 158(1-3), 154 (2009)