화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.25, No.4, 243-260, November, 2013
Computational analysis of hydrodynamics of shear-thinning viscoelastic fluids in a square lid-driven cavity flow
E-mail:
Computational results for steady laminar flow of three different shear thinning fluids lid-driven square cavity are presented. The viscoelastic nature of the fluids is represented by linear and exponential Phan-Thien Tanner (PTT) and Giesekus constitutive models. Computations are based on finite volume technique incorporating non-uniform collocated grids. The stress terms in the constitutive equations are approximated by higher-order and bounded scheme of Convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection (CUBISTA). Effects of the elasticity, inertia as well as constitutive model parameters on the stress and velocity fields, size and intensity of the primary and secondary vortexes are investigated and discussed in detail. Moreover highly accurate benchmark numerical solutions are provided for each considered constitutive model.
  1. Aboubacar M, Matallah H, Tamaddon-Jahromi HR, Webster MF, J. Non-Newton. Fluid Mech., 104(2-3), 125 (2002)
  2. Aboubacar M, Matallah H, Webster MF, J. Non-Newtonian Fluid Mech., 103, 65 (2012)
  3. Alves MA, Oliveira PJ, Pinho FT, Int. J. Numer. Meth. Fluids., 4, 47 (2003)
  4. Alves MA, Oliveira PJ, Pinho FT, J. Non-Newton. Fluid Mech., 110(1), 45 (2003)
  5. Alves MA, Pinho FT, Oliveira PJ, J. Non-Newton. Fluid Mech., 101(1-3), 55 (2001)
  6. Baig C, Jiang B, Edwards BJ, Keffer DJ, Cochran HD, J. Rheol., 50(5), 625 (2006)
  7. Bird RB, Curtiss CF, Armstrong RC, Hassager O, Dynamic of Polymeric Liquids, vol. 2, Wiley New York (1987)
  8. Bogaerds ACB, Grillet AM, Peters GWM, Baaijens FPT, J. Non-Newton. Fluid Mech., 108(1-3), 187 (2002)
  9. Byars JA, Binnington RJ, Boger DV, J. Non-Newton. Fluid Mech., 72(2-3), 219 (1997)
  10. Cruz DOA, Pinho FT, Oliveira PJ, J. Non-Newton. Fluid Mech., 132(1-3), 28 (2005)
  11. Fietier N, Deville MO, J. Non-Newton. Fluid Mech., 115(2-3), 157 (2003)
  12. Giesekus H, Rheol. Acta., 21, 366 (1982)
  13. Grillet AM, Bogaerds ACB, Peters GWM, Baaijens FPT, J. Non-Newton. Fluid Mech., 103(2-3), 221 (2002)
  14. Hayase T, Humphrey JAC, Greif R, J. Comp. Phys., 98, 108 (1992)
  15. Khan SA, Larson RG, J. Rheol., 31, 207 (1987)
  16. Khosla PK, Rubin SG, Comput. Fluids., 2, 207 (1974)
  17. Larson RG, J. Non-Newtonian Fluid Mech., 23, 249 (1987)
  18. Lee J, Yoon S, Kwon Y, Kim S, Rheol. Acta, 44(2), 188 (2004)
  19. Loh KW, Tay AA, Teoh SH, Polym. Eng. Sci., 36(15), 1990 (1996)
  20. Maia JM, J. Non-Newton. Fluid Mech., 85(2-3), 107 (1999)
  21. Patankar SV, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York. (1980)
  22. Patankar SV, Spalding DB, Int. J. Heat Mass Transfer., 15, 1787 (1972)
  23. Peters GWM, Schoonen JFM, Baaijens FPT, Meijer HEH, J. Non-Newton. Fluid Mech., 82(2-3), 387 (1999)
  24. Phan-Thien N, J.Rheol., 22, 259 (1978)
  25. Phan-Thien N, Tanner RI, J. Non-Newtonian Fluid Mech., 2, 353 (1977)
  26. Ravanchi MT, Mirzazadeh M, Rashidi F, International Journal of Heat and Fluid Flow., 28, 838 (2007)
  27. Roache PJ, Annu. Rev. Fluid Mech., 29, 123 (1997)
  28. Soulages J, Schweizera T, Venerus DC, Kroger M, Ottinger HC, J. Non-Newton. Fluid Mech., 154(1), 52 (2008)
  29. Versteeg HK, Malalasekera W, An introduction to computational fluid dynamics: The finite volume method, Prentice Hall. (1995)
  30. Yapici K, Korea-Aust. Rheol. J., 24(1), 11 (2012)
  31. Yapici K, Karasozen B, Uludag Y, J. Non-Newton. Fluid Mech., 164(1-3), 51 (2009)
  32. Zatloukal M, J. Non-Newton. Fluid Mech., 113(2-3), 209 (2003)