화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.24, No.6, 599-604, December, 2013
Ti가 첨가된 Mn-Cu 혼합산화물을 이용한 저온 SCR 반응 특성
Characterization of Low Temperature Selective Catalytic Reduction over Ti Added Mn-Cu Metal Oxides
E-mail:
초록
본 연구는 공침법으로 Ti가 첨가된 Mn-Cu 혼합산화물을 이용하여 200 ℃ 이하의 저온 영역에서의 NH3-SCR 반응특성에 관한 것이다. 제조된 촉매들은 BET, XRD, XPS, TPD를 이용하여 각각의 물리/화학적 특성을 분석하였다. Mn-Cu 혼합산화물은 매우 큰 비표면적과 저온에서의 높은 SCR 효율을 나타내었으며, Ti가 첨가된 경우 상대적으로 높은 SCR 효율과 N2 선택도를 나타내었다. 이러한 결과는 Ti가 첨가됨에 따라 화학 흡착된 산소종(Me-Oads)이 증가하여 NO가 NO2로의 산화가 촉진되고, Mn 3+와 같은 NH3의 흡착점의 수가 증가되었기 때문이다.
In this study, Ti added Mn-Cu mixed oxide catalysts were prepared by a co-precipitation method and used for the low temperature(< 200 ℃) selective catalytic reduction (SCR) of NOx with NH3. Physicochemical properties of these catalysts were characterized by BET, XRD, XPS, and TPD. Mn-Cu mixed oxide catalysts were found to be amorphous with a large surface and they showed high SCR activity. Experimental results showed that the addition of TiO2 to Mn-Cu oxide enhanced the SCR activity and N2 selectivity. Ti addition led to the chemically adsorbed oxygen species that promoted the oxidation of NO to NO2 and increased the number of NH3 adsorbed-sites such as Mn3+.
  1. Jeon MJ, Jeon JK, Park SH, Park YK, Appl. Chem. Eng., 23(3), 348 (2012)
  2. Tang X, Hao J, Xu W, Li J, Catal. Commun., 8, 329 (2007)
  3. Park TS, Jeong SK, Hong SH, Hong SC, Ind. Eng. Chem. Res., 40(21), 4491 (2001)
  4. Kang M, Park ED, Kim JM, Yie JE, Catal. Today, 111(3-4), 236 (2006)
  5. Qi GS, Yang RT, Chang R, Appl. Catal. B: Environ., 51(2), 93 (2004)
  6. Qi GS, Yang RT, J. Catal., 217(2), 434 (2003)
  7. Kang M, Park ED, Kim JM, Yie JE, Appl. Catal. A: Gen., 327(2), 261 (2007)
  8. Singoredjo L, Korver R, Kapteijn F, Moulijin J, Appl. Catal. B:Environ., 1, 297 (1992)
  9. Ma AZ, Grunert W, Chem. Commun., 1, 71 (1999)
  10. Kijlstra WS, Brands DS, Smit HI, Poels EK, Bliek A, J. Catal., 171(1), 219 (1997)
  11. Li J, Chen J, Ke R, Luo C, Hao J, Catal. Commun., 8, 1896 (2007)
  12. Marban G, Valdes-Solis T, Fuertes AB, J. Catal., 226(1), 138 (2004)
  13. Chen ZH, Xi XH, Cen CP, Gao X, Wang LF, Advanced Materials Research., 233, 1564 (2011)
  14. Morales MR, Barbero BP, Cadus LE, Appl. Catal. B: Environ., 67(3-4), 229 (2006)
  15. Shan WP, Liu FD, He H, Shi XY, Zhang CB, Catal. Today, 184(1), 160 (2012)
  16. Qi GS, Yang RT, J. Phys. Chem. B, 108(40), 15738 (2004)
  17. Ko JH, Park SH, Jeon JK, Sohn JM, Lee SH, Park YK, Appl. Chem. Eng., 23(1), 105 (2012)
  18. Papavasiliou J, Avgouropoulos G, Ioannides T, J. Catal., 251(1), 7 (2007)
  19. Dalton JS, Janes PA, Jones N, Nicholson JA, Hallam KR, Environ. Pollut., 120, 415 (2002)
  20. Zhang X, Ma K, Zhang L, Yong G, Dai Y, Liu S, Chinese J.Chem. Phys., 24, 97 (2011)
  21. Shan W, Liu F, He H, Shi X, Zhang C, Appl. Catal. B: Environ., 115, 100 (2012)
  22. Shan W, Liu F, He H, Shi X, Zhang C, Appl. Catal. B: Environ., 115, 100 (2012)
  23. Pena DA, Uphade BS, Smirniotis PG, J. Catal., 221(2), 421 (2004)
  24. Koebel M, Elsener M, Madia G, Ind. Eng. Chem. Res., 40(1), 52 (2001)
  25. Jin R, Liu Y, Wu Z, Wang H, Gu T, Chemosphere., 78, 1160 (2010)