Applied Microbiology and Biotechnology, Vol.97, No.20, 9175-9183, 2013
A new method for the determination of critical polyethylene glycol concentration for selective precipitation of DNA fragments
Separation strategies based on size-selective precipitation of DNA fragments with polyethylene glycol (PEG) have been used for achieving desired DNA interval in automated sample preparation for next-generation sequencing. By varying PEG concentration, DNA fragments of different sizes can be precipitated onto surfaces of carboxyl-coated paramagnetic particles selectively, and therefore, the desired DNA interval can be obtained. However, one of the crucial points in this approach is to determine the critical PEG concentration for DNA fragment of a certain size. The aim of this work was to develop a convenient and reliable method for accurately determining the critical PEG concentration. In our method, at a fixed concentration of sodium chloride (NaCl), recovered DNA samples obtained with different PEG concentrations were directly quantified, and their concentrations as a function of the PEG concentration were fitted by the logistic function. The critical PEG value was easily and accurately determined from the fitted logistic function. The repeatability and stability of the critical PEG value were assessed, showing an excellent reliability of the method. Based on this method, critical PEG values of different-size DNA fragments were determined at different NaCl concentrations. The effectiveness of the method was also demonstrated by selective precipitation of DNA fragments.
Keywords:Selective precipitation;Polyethylene glycol;Sample preparation;Paramagnetic particle;Critical polyethylene glycol concentration;Logistic function