화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.1, 102-109, February, 1995
다성분핵종을 함유한 질산계로 부터 TBP 용매추출에 의한 우라늄 제거 연구(I)
A Study on the Removal of Uranium in Nitric Acid Solution Containing Multi-components by Solvent Extraction with TBP(Ⅰ)
초록
고준위 방사성 폐액에 미량 존재하는 우라늄 및 폐액 농도에 기준한 10개의 핵종이 함유된 질산 수용액으로부터 TBP를 사용하여 잔존 우라늄을 효과적으로 제거하는 조건을 찾기 위한 실험과 이의 해석이 수행되었다. 상기 혼합성 분계에서 우라늄의 제거율은 상비(Phase ration), TBP농도 및 질산 농도 변화에 관계없이 고준위 방사성 폐액 내의 우라늄 농도를 기준으로 하여 최대 70% 이상을 초과하지 못하고, 이때의 우라늄 분배계수는 기존의 우라늄 분배계수 예측식과 큰 차이를 보이고 있어 이의 원인 규명과 기존 예측식의 수정이 요구된다. 이러한 계에서 우라늄을 가장 효과적으로 제거하기 위한 조업조건은 TBP농도는 15vo1. %, 상비는 약 2.5이며 이때 용액중의 우라늄 제거율은 약 70% 정도이었다.
This study work has investigated the experiments and their analysis for finding a effective condition to remove uranium by extraction with TBP from nitric acid solution containing uranium and 10 elements on the basis of high-level radioactive waste. The removal degree of uranium does not exceed 70 % regardless of any changes of TBP vol.%, phase ratio and concentration of nitric acid. The distribution coefficient of uranium in multi-components system is quite different from one obtained by the semi-empirical equations already published for the estimation of distribution coefficient of uranium and the elucidation of its reason and the modification of the existing equation should be required. The optimal condition for effective removal of uranium under this experimental condition are approximately TBP vol.% of 15 and phase ratio of 2.5.
  1. Kubota M, Morita Y, Tochiyama O, Jnoue Y, JAERI-M 88-002 (1988)
  2. Kondo Y, Kubota M, Abe T, Nagato K, JAERI-M 91-47 (1991)
  3. Fujiwara T, Shirahashi K, Morita Y, Kubota M, JAERI-M 90-178 (1990)
  4. Kubota M, Yamaguchi I, Nakamura H, Tachimori S, Sato K, JAERI-M 9627 (1981)
  5. Kubota M, Nakamura H, JAERI-M 85-066 (1985)
  6. Koyama H, Nucl. Eng. Jpn., 35, 37 (1989)
  7. Takahashi T, Yamashita A, Nucl. Eng. Jpn., 35, 26 (1989)
  8. Byun KH, Jung DY, Yoo JH, Park HS, Seo IS, Chem. Ind. Technol., 9(1), 18 (1991)
  9. Kubota M, JAERI-M 85-030 (1985)
  10. IAEA: Technical Report Series No. 214, Internation Atomic Energy Agency (1982)
  11. Vandegrift GF, ANL-84-85, Argon National Laboratory (1984)
  12. Davis J, Paisner JA, UCID-20448, Lawrence Livermore National Laboratory (1985)
  13. Kubota M, J. Atom. Ener. Soc. Jpn., 29, 775 (1987)
  14. Bresesti M, STI/DOC/10/214, International Atomic Energy Agency (1982)
  15. Kolarik Z, Schuler R, Actinide Processing Methods and Materials, TMS, 359 (1994)
  16. Skalberg M, Liljenzin JO, Nucl. Eng. Int., 2, 30 (1993)
  17. Kubota M, Dojiri S, Yamaguchi I, High Level Radioactive Waste and Spent Fuel Management Vol. II, The American Society of Mechnical Engineerings, 537 (1989)
  18. Schulz WW, Science and Technology of Tributyl Phosphate, CRC Press Florida (1990)
  19. Ishimori T, Kimura K, Nakamura E, JAERI 1047 (1963)
  20. McKibben JM, Holcomb HP, Orth DA, Prout WE, Scotten WC, DP-1361 (1974)
  21. Thompson MC, DP-1336 (1973)
  22. Irish ER, Reas WH, TID-7534 (1957)
  23. Maile JC, Sep. Sci. Technol., 15, 959 (1980)
  24. Pruett DJ, Radiochim. Acta, 27, 115 (1980)
  25. Watson SB, Rainey RH, ORNL-TM-5123 (1975)
  26. Horner DE, ORNL-TN-2711 (1970)