화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.2, 175-183, April, 1995
초임계 공정을 이용한 석유잔사유로부터 경질 탄화수소의 추출
Extraction of Light Hydrocarbon from Petroleum Residues with Supercritical Process
초록
초임계 공정으로 석유잔사유로부터 경질 탄화수소를 추출하기 위하여 펜탄 용매를 이용하였다. 온도 및 압력의 변화에 따른 추출 특성을 조사하기 위하여, 추출실험을 온도 483K, 503K 및 523K에서, 압력 4.4MPa∼12.0MPa에서 수행하였다. 추출수율은 시스템 압력이 증가함에 따라, 펜탄 용매의 초임계 영역에서 임계온도로 접근할수록 증가하였다. 또한 임계밀도 이하에서 급격한 추출수율 감소는 액-액과 같은 시스템에서 기-액과 같은 시스템으로 이동하기 때문이라 예측된다. 추출유의 GC 분석결과 초기 추출물은 비교적 경질 화합물을 포함차고 있으나, 추출시간이 경과함에 따라 탄소수 분포는 중질 탄소수로 이동하고 있음을 나타내었다.
Supercritical extraction of light hydrocarbon from residues remaining after distillation of crude oil, has been carried out by n-pentane solvent. In order to investigate the extraction characteristics upon the variation of temperature and pressure, the experiments were performed at 483K, 503K and 523K with pressure range from 4.4MPa to 12.0MPa, respectively. The extraction yield has shown to be increased with the system pressure and the temperature approaching down to critical state of n-pentane from the supercritical region. A drastic fall down exhibited in yield under critical density may be stemmed from a phase transition from liquid-liquid-like system to a liquid-vapor-like system. GC analysis of extracted oil revealed that the earlier extracts contain relatively lighter compounds, and the carbon number distribution of the extract has shifted toward the heavier carbon number with lapse of operation time.
  1. McHugh MA, Krukonis VJ, "Supercritical Fluid Extraction," Butterworth Publishers, M.A. (1986)
  2. Zosel K, Angew. Chem.-Int. Edit., 17, 702 (1978) 
  3. Zhuze TP, Petroleum, 23, 298 (1960)
  4. Noh MJ, Yoo KP, Chem. Ind. Technol., 10(2), 89 (1992)
  5. Audeh CA, Yan TY, U.S. Patent, 4,354,928 (1982)
  6. Coombs DM, Willers GP, U.S. Patent, 4,482,453 (1984)
  7. Paspak J, U.S. Patent, 4,483,761 (1984)
  8. Zarchy AS, U.S. Patent, 4,528,100 (1985)
  9. Gearhart JA, Garwin L, Oil Gas J., 74, 63 (1976)
  10. Wallace D, Henry D, Pongar K, Zimmerman D, Fuel, 66, 44 (1987) 
  11. Ely JF, Baker JK, NBS TN-1070, December (1983)
  12. Williams DF, Chem. Eng. Sci., 36, 1769 (1981) 
  13. Paulaitis ME, Krukonis VJ, Reid RC, Rev. Chem. Eng., 1, 179 (1983)
  14. Lin H, Fluid Phase Equilib., 16, 151 (1984) 
  15. Orr FM, Silva MK, Lien CL, SPEJ, 23, 281 (1983)
  16. Long J, Fan Y, Acta Petrolei Sinica, (Petoleum Processing Section), 5, 1 (1989)
  17. Hwang JS, Ph.D. Dissertation, University of Utah (1992)
  18. Fattori M, Bulley NR, Meisen A, JAOCS, 65, 968 (1988) 
  19. Lutz U, Oelert HH, Blinzer O, Lubke M, Severin D, Collect. Colloq. SEmin., 40, 242 (1984)
  20. Peter S, Brunner G, Angew. Chem.-Int. Edit., 17, 746 (1978) 
  21. Gearhart JA, Nelson SR, Energy Process., 75, 34 (1983)
  22. Gearhart Ja, Nelson SR, Fifth Annual Industrial Energy Conservation Technology Conference, 823 (1983)