화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.2, 243-249, April, 1995
5-Methyl-4-Imidazolecarboxylic Acid Ester 연속합성 반응의 특성 및 공정개발 연구
A Study on the Development of Continuous Process for the Production of 5-Methyl-4-Imidazole-Carboxylic Acid Ester
초록
Ethylacetoacetate 로부터 중간 생성물인 α-acetyl-α-hydroxy iminoacetic acid, α, β-dioxobutylic acid를 거쳐 생성되는 5-methyl-4-imidazolecarboxylic acid ester의 연속반응공정 개발을 위하여 세 경우의 연속 반응기 schemes : 1) Annular Flow Reactor 2) Continuous Flow Stirred Tank Reactor (CFSTR) 3) Heat Exchange Loop/plug Flow Reactor에 따른 반응수율특성, 공정변수 영향 등을 연구하였다. 율속 단계인 uα,β-dioxobutylic acid 생성 반응의 수율을 최대로 높일 수 있는 반응기 scheme은 연속적으로 배열된 2중 열교환 루프를 거쳐 냉각조에 잠겨있는 플러그흐름 반응기를 통과시키는 배열이었으며 이때의 수율은 HCI의 농도에 따라 (6.6∼8.3M) 70∼75%이었다. 또한 반응 체류시간은 1∼1.5hr이었으며 발열반응으로 인한 α,β-dioxobutylic acid의 decomposition이 일어나는 온도범위는 12∼15℃ 이었다. 2중 열교환 루프에서의 총괄 전열 계수는 25Btu/hr-ft2-。F이었고 막(film) 전열계수는 약 40Btu/hr-ft2-。F로 추정되었다. 이러한 연속 반응기 scheme은 반응수율의 감소없이 2중 열교환 루프에 허용될 수 있는 최적의 공정변수 (온도, HCI 주입속도, 반응체류시간 등)만 결정되면 상업화 공정 Scale-up이 충분히 가능할 것으로 판단된다.
Three continuous reactor schemes : 1)Annular Flow Reactor, 2)Continuous Flow Stirred Tank Reactor(CFSTR), 3) Heat Exchange Loop/Plug Flow Reactor, were tested under the formation of α, β-dioxobutylic acid, which is the rate-controlled step. The reactor scheme which performed best in terms of α, β-dioxobutylic acid yield consists of a heat exchange loop containing two double-pipe exchangers in series, followed by a plug flow reactor immersed in a coolant bath. The rate of formation of α, β-dioxobutylic acid was found to be a function of α-acetyl-α-hydroxyiminoacetic acid and HCI concentration. The decomposition of α, β-dioxobutylic acid was found to occur in the range of process temperature, 12∼15℃. Overall heat transfer coefficient based on inside area and the film coefficient was 25 and 40 Btu/hr-ft2-℉, respectively. The reactor scheme which was developed in this study is scalable to the commercial, size, with the optimal determination of process variables.
  1. Cho WS, Park SJ, Kim HH, J. Korean Ind. Eng. Chem., submitted
  2. Bohme, Chemische Berichte, 91, 988 (1985)
  3. U.S. Patent, 4,146,724
  4. U.S. Patent, 3,950,333
  5. Akagane, Bull. Chem. Soc. Jpn., 42, 3204 (1969) 
  6. Ertel, Liebigs Ann. Chem., 1399 (1974)
  7. Wagner, "Synthetic Organic Chemistry," 336, John Wiley & Sons, New York (1972)
  8. Perry RH, Chemical Engineers' Handbook, 5th ed., McGraw-Hill, New York (1973)