화학공학소재연구정보센터
Current Applied Physics, Vol.13, No.8, 1707-1712, 2013
Early transition metal dopants in cuprous oxide: To spin or not to spin
We present a trend study of a large variety of dopants at the cation site in Cu2O (i.e. substituting Cu), focussing largely on the early 3d-, 4d-, and 5d-transition metals (TMs) in which many of them are known to be non-magnetic. We also include s-, sp- and d(10)-metals for comparison. We find that doping with sp-elements results in zero spin moment while dopants with a partially filled d-band show a stronger tendency to magnetize and 3d-TM dopants exhibit a larger magnetic moment than most of the 4d- and 5d-TM dopants. From this trend study, we also find a correlation between their substitution enthalpy and associated interatomic relaxations. In particular, Ti-doped Cu2O appears to be an interesting system, given its "peculiar" ability to exhibit a spin moment when doped with a non-magnetic substituent like Ti. We also find that the interaction between two doped Ti atoms in Ti-2:Cu2O is predominantly antiferromagnetic, and interestingly (and unexpectedly), this interaction rapidly declines as a function of inter-dopant distance, as in the case for the magnetic late-TM dopants like Co-2:Cu2O. Crown Copyright (C) 2013 Published by Elsevier B. V. All rights reserved.