Industrial & Engineering Chemistry Research, Vol.52, No.34, 11880-11887, 2013
Synthesis of 1,2-Dialkyl-, 1,4(5)-Dialkyl-, and 1,2,4(5)-Trialkylimidazoles via a One-Pot Method
Despite the utility of imidazoles for a wide variety of chemical and biological applications as well as the growing research in imidazolium-based ionic liquids (ILs), synthetic studies and characterization data for N-functionalized imidazole derivatives with substituents present at the C(2) and/or C(4) and/or C(5) positions are generally unreported. Here, we modify our prior method for synthesizing monofunctionalized imidazoles and apply it to the production of a library of 30 di- and trifunctionalized alkylimidazoles using only commodity chemicals and avoiding anhydrous solvents or air/water-sensitive reagents. For all products, purities of >98% could be readily achieved, although yields were lower than in our prior work with imidazole, which may be due to mass transfer limitations and/or increased nucleophilicity of substituted imidazole products. Interestingly, we also observe that, when 4-methylimidazole or 2-ethyl-4-methylimidazole is used as a starting material, two regioisomers are inevitably formed. We employed electronic structural calculations to aid in identifying the chemical shifts and quantifying the relative presence of the regioisomers. In both series of compounds where regioisomers could be formed, the 4-methyl regioisomer was favored. Although the formation of similar regioisomers has been previously noted in the literature, it has perhaps not been fully considered in works related to imidazolium-based ILs.