화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.2, 320-330, April, 1995
초임계 이산화탄소 내 추출물의 확산 특성
Determination of Diffusion Coefficients of Extracts in Supercritical Carbon Dioxide
초록
최근 초임계유체를 이용한 추출공정은 비교적 휘발성이 낮은 생화학 물질의 분리와 고분자 물질의 분획 기술로 많은 분야에 적용되어 활발한 연구가 진행되고 있다. 그러나 공정설계와 scale-up에 필수적으로 요구되는 확산계수와같은 전달특성에 관한 데이타의 부족은 상업적인 수준의 기술로 발전을 저해하고 있다. 초임계유체 추출공정에서 지배적인 속도 메카니즘이며, 장치설계에 중요한 변수가 확산특성이므로 초임계유체 내에서 추출물의 확산계수를 예견할 수 있는 능력이 추출공정의 설계와 효율적인 조작에 있어 매우 중요하다. 본 연구에서는 초임계유체 크로마토그래피를 이용하여 capillary peak-broadening법으로 초임계 이산화탄소 내에서 naphthalene의 확산계수를 308.15∼325.15K와 175∼275bar의 압력 범위에서 정량적으로 결정하였고, 일정 온도에서 압력이 증가됨에 따라 낮은 압력 범위에서는 확산계수에 미치는 압력의 영향이 크고, 높은 압력범위에서는 압력의존성이 작음을 확인하였다. 또한 초임계유체계의 압력과 온도의 변화는 밀도, 점도 및 몰 부피와 같은 유체의 전체적인 물성을 변화시켜 용질의 확산특성에 영창이 있음을 확인하였고, 기존의 액체계에 대한 확산계수 상관식 중에서 Matthews-Akgerman식의 확장적용이 실험적으로 측정한 데이타와 잘 일치함을 확인하였다.
Supercritical fluid extraction(SFE) has been studied in recent years as a technique for the separation of an available component from the material of low volatility and the fractionation of polymers, but the lack of data for transport characteristics essentially required for the extraction process design and scaleup has hindered development of the technology to a commercial level. Because diffusion is the dominant rate mechanism in extraction process, the ability to predict the diffusion coefficient is of considerable importance in process design and efficient operation. In this study, binary diffusion coefficients of naphthalene in supercritical carbon dioxide were measured by using the capillary peak broadening(CPB) method. Quantitative measurements were obtained by SFC in the temperature range 308.15∼328.15K and at pressures between 175 and 275bar. The experimental values of the diffusion coefficients have a magnitude of 10-4㎠/s and were approximately in the range 0.5598∼1.1914 u 10-4㎠/s. The Influence of pressure on the diffusion coefficients at higher pressure range was less than that at lower pressure. As the pressure and temperature change, it is clear that the physical properties of fluid such as density, viscosity and molar volume determined the diffusion characteristics of the solute In SC-CO2. Among the various theoretical equations, the Matthews-Akgerman equation provided a more successful correlation for the experimental data.
  1. Jonston KP, Penninger JML, Supercritical Fluid Science and Technology; ACS Symposium Series, 406; American Society: Washington, DC (1989)
  2. Lee ML, Markides KE, Analytical Supercritical Fluid Chromatography and Extraction; Chromatography Conference, Inc; Provo UT (1990)
  3. Giddings JC, J. Phys. Chem., 33, 1579 (1960) 
  4. Hargorove GL, Saweyer HJ, Anal. Chem., 78, 1927 (1974)
  5. Grushka E, Kitka EJ, J. Phys. Chem., 78, 2297 (1974) 
  6. Grushka E, Kitka EJ, J. Am. Chem. Soc., 98, 643 (1970) 
  7. Balenovic Z, Myers NM, Giddings JC, J. Chem. Phys., 52, 915 (1970) 
  8. vanWasen U, Swaid I, Schneider GM, Angew. Chem.-Int. Edit., 92, 585 (1980)
  9. Taylor G, Proc. R. Soc. London Ser. A, 219, 186 (1953)
  10. Taylor G, Proc. R. Soc. London Ser. A, 223, 446 (1954)
  11. Taylor G, Proc. R. Soc. London Ser. A, 225, 473 (1954)
  12. Aris R, Taylor G, Proc. R. Soc. London Ser. A, 235, 67 (1956)
  13. Marrero TR, Mason EA, J. Chem. Ref. Data., 1, 3 (1972)
  14. Virgil R, Grushka M, Adv. Chromatogr., 12, 99 (1975)
  15. Levenspiel O, Chem. Eng. Sci., 6, 227 (1957) 
  16. Springston S, Novotny M, Anal. Chem., 58, 2699 (1986) 
  17. Alizade A, NitrodeCastro CA, Wakeham WA, Int. J. Thermophys., 1, 243 (1980) 
  18. Schneider GM, Swaid I, Ber. Bunsen-Ges. Phys. Chem., 83, 696 (1979)
  19. Giddings JC, Seager SL, J. Chem. Phys., 33, 1579 (1960)
  20. Angus S, Armstrong B, deReuck KM, Carbon Dioxide: International Thermodynamic Tables of the Fluid State; Pergamon Press: Oxford, 3 (1976)
  21. Iawsaki H, Takahashi M, J. Chem. Phys., 1, 1930 (1981) 
  22. Funazukuri T, Hachisu S, Wakao N, Anal. Chem., 61, 118 (1989) 
  23. Liong KK, Wells PA, Foster NR, J. Supercrit. Fluids, 4, 41 (1991)
  24. Lauer HH, McManigill D, Board RD, Anal. Chem., 55(8), 1370 (1983)
  25. Sassiat PR, Mourier P, Caude MH, Rosset RH, Anal. Chem., 59, 1164 (1987) 
  26. Dibenedetti PR, Reid RC, AIChE J., 32, 2034 (1986) 
  27. Wilke CR, Chang P, AIChE J., 1, 264 (1955) 
  28. Scheibel EG, Ind. Eng. Chem., 46, 2067 (1954) 
  29. Reddy KA, Doraiswamy JM, Poling BE, Ind. Eng. Chem. Fundam., 97, 6609 (1967)
  30. Lusis MA, Ratcliff GA, J. Chem. Eng., 46, 385 (1968) 
  31. Sun CKJ, Chen SH, AIChE J., 31, 1904 (1985) 
  32. Ried RC, Prausnitz JM, Poling BE, The Properties of Gases and Liquids, 4th ed., 53, McGraw-Hill, New York (1987)
  33. Dymond JH, J. Chem. Phys., 60, 969 (1974) 
  34. Hildebrand JH, Science, 174, 490 (1971) 
  35. Chen SH, Davis HT, Evans DF, J. Chem. Phys., 77, 2540 (1982) 
  36. Matthews MA, Akgerman A, AIChE J., 33, 881 (1987)