Journal of Adhesion Science and Technology, Vol.28, No.2, 171-185, 2014
Peeling model for cell adhesion on electrospun polymer nanofibres
Need for controlled drug delivery has gained immense attention over the conventional dosage forms due to improved therapeutic efficacy and reduced toxicity by controlled delivery. Recently, electrospun fibres have gained wide attention particularly for drug delivery systems, tissue engineering and vascular grafts for biomedical application. In the present work, the feasibility of producing fibrous composite of polylactic acid (PLA) and hydroxyapatite with silver nitrate using electrospinning technique was explored to understand the antibacterial property of the dressing. These non-woven fibres were post processed and heat treated with UV radiations. Such heat treatment is known to reduce the ionic silver to silver nanoparticles and also improve the crystalline properties of hydroxyapatite and PLA. Antimicrobial tests show that these fibres have maintained antibacterial properties against Staphylococcos aureus. It was noticed that there was no discolouration in the wound mat. To test the biocompatibility of these fabrics, the electrospun mats were cultured with fibroblasts. The results indicated that the cells attached and proliferated as continuous layers and maintained a healthy morphology. Once the biomaterial is implanted, no control is possible either over the biomaterial characteristics or the healing process. At this point the modelling process takes over. The present study is extended to a mathematical model for a primary step in tissue regeneration-cell adhesion, using a one-dimensional peeling model'.