화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.3, 397-403, June, 1995
다성분핵종을 함유한 질산계로부터 TBP 용매추출에 의한 우라늄 제거 연구(II)
A Study on the Removal of Uranium in Nitric Acid Solution Containing Multi-components by Solvent Extraction with TBP(Ⅱ)
초록
고준위 방사성 폐액에 기준한 우라늄 및 10종류의 핵종을 함유한 질산 수용액계에서 TBP에 의한 우라늄 추출률의 저하 원인을 밝히기 위한 실험과 이의 해석이 수행되었다. 우라늄의 농도가 다른 핵종들의 농도보다 상대적으로 낮은 5g/ℓ 이하로 존재할 때, 다성분계에서의 우라늄 분배계수는 기존의 우라늄 분배계수를 예측하기 위한 기존의 반경험식의 결과와 크게 차이가 났다. 다성분 상태에서 TBP에 의한 낮은 수출률의 결과는 우라늄과 같이 존재하는 네오다이뮴과 철이온의 존재에 의해 야기되었음이 확인이 되었다. 네오다이뮴과 철이온만이 빠진 다성분계에서는 15vo1.%의 TBP를 사용한 2회 추출에 의해서 초기 농도 2g/ℓ인 우라늄의 98% 이상 제거가 가능하였고 이는 우라늄 단일 성분계의 결과와 같았다.
This study has investigated the experiments and their analysis for finding a cause of that the low extractability of uranium by TBP from nitric acid solution containing uranium and 10 elements on the basis of high level radioactive waste. When the concentration of uranium is low relatively, compared with those of other elements in the system, that is, less than 5g/ℓ, the distribution coefficient of uranium in multi-components system is quite different from the one obtained by the semi-empirical equations already published for the estimation of distribution coefficient of uranium. Nd and Fe coexisting together with uranium in the solution were found to affect the low extractability of uranium by TBP in the multi-components system. In the multi-components system in absence of Nd and Fe, more than 98% of initial uranium concentration of 2g/ℓ could be removed by 2 times extraction with TBP of 15vo1.%. The result was the same to that of uranium single component system.
  1. Kubota M, Morita Y, Tochiyama O, Jnoue Y, JAERI-M 88-002 (1988)
  2. Kondo Y, Kubota M, Abe T, Nagato K, JAERI-M 91-47 (1991)
  3. Fujiwara T, Shirahashi K, Morita Y, Kubota M, JAERI-M 90-178 (1990)
  4. Kubota M, Yamaguchi I, Nakamura H, Tachimori S, Sato K, JAERI-M 9627 (1981)
  5. Kubota M, Nakamura H, JAERI-M 85-066 (1985)
  6. Koyama H, Nucl. Eng., 35, 37 (1989)
  7. Takahashi T, Yamashita A, Nucl. Eng., 35, 26 (1989)
  8. Byun KH, Jung DY, Yoo JH, Park HS, Seo IS, Chem. Ind. Technol., 9(1), 18 (1991)
  9. Kubota M, JAERI-M 85-030 (1985)
  10. IAEA: Technical Report SEries No. 214, Internation Atomic Energy Agency (1982)
  11. Vandegrift GF, ANL-84-85, Argon National Laboratory (1984)
  12. Davis J, Paisner JA, UCID-20448, Lawrence Livermore National Laboratory (1985)
  13. Kubota M, J. Atom. Ener. Soc. Jpn., 29, 775 (1987)
  14. Bresesti M, STI/DOC/10/214, International Atomic Energy Agency (1982)
  15. Kolarik Z, Schuler R, "Actinide Processing Mmethods and Materials," TMS, 359 (1994)
  16. Skalberg M, Liljenzin JO, Nucl. Eng. Int., Feb., 30 (1993)
  17. Kubota M, Dojiri S, Yamaguchi I, "High Level Radioactive Waste and Spent Fuel Management Vol. II," The American Society of Mechnical Engineerings, 537 (1989)
  18. 유재형, 신영준, 이일희, 김광욱, 한국원자력연구소 보고서, KAERI/RR-1322/94 (1994)
  19. Schulz WW, "Science and Technology of Tributyl Phosphate," CRC Press, Florida (1990)
  20. Ishimori T, Kimura K, Nakamura E, JAERI 1047 (1963)
  21. McKibben JM, Holcomb HP, Orth DA, Prout WE, Scotten WC, DP-1361 (1974)
  22. Thompson MC, DP-1336 (1973)
  23. Kim KW, Lee EH, Shin YJ, Yoo JH, Park HS, J. Korean Ind. Eng. Chem., 6(1), 102 (1995)
  24. Pruett DJ, Radiochim. Acta, 27, 115 (1980)
  25. Watson SB, Rainey RH, ORNL-TM-5123 (1975)
  26. Horner DE, ORNL-TM-2711 (1970)
  27. Seddon EA, Seddon K, "The Chemistry of Ruthenium," Elsevier, N.Y. (1984)
  28. Izumida T, Kawamura F, J. Nucl. Sci. Technol., 27, 267 (1990)