Journal of Physical Chemistry A, Vol.117, No.34, 8199-8204, 2013
Nature of Quantum States Created by One Photon Absorption: Pulsed Coherent vs Pulsed Incoherent Light
We analyze electronically excited nuclear wave functions and their coherence when subjecting a molecule to the action of natural, pulsed incoherent solar-like light and to that of ultrashort coherent light assumed to have the same center frequencies and spectral bandwidths. Specifically, we compute the spatiotemporal dependence of the excited wave packets and their electronic coherence for these two types of light sources, on different electronic potential energy surfaces. The resultant excited state wave functions are shown to be dramatically different, reflecting the light source from which they originated. In addition, electronic coherence is found to decay significantly faster for incoherent light than for coherent ultrafast excitation, for both continuum and bound wave packets. These results confirm that the dynamics observed from ultrashort coherent excitation does not reflect what happens in processes induced by solar-like radiation, and conclusions drawn from one do not, in general, apply to the other. These results provide further support to the view that the dynamics observed in studies using ultrashort coherent pulses can be significantly different than those that would result from excitation with natural incoherent light.