Journal of the American Chemical Society, Vol.135, No.40, 15101-15113, 2013
NMR-Based Conformational Ensembles Explain pH-Gated Opening and Closing of OmpG Channel
The outer membrane protein G (OmpG) is a monomeric 33 kDa 14-stranded beta-barrel membrane protein functioning as a nonspecific porin for the uptake of oligosaccharides in Escherichia coli. Two different crystal structures of OmpG obtained at different values of pH suggest a pH-gated pore opening mechanism. In these structures, extracellular loop 6 extends away from the barrel wall at neutral pH but is folded back into the pore lumen at low pH, blocking transport through the pore. Loop 6 was invisible in a previously published solution NMR structure of OmpG in n-dodecylphosphocholine micelles, presumably due to conformational exchange on an intermediate NMR time scale. Here we present an NMR paramagnetic relaxation enhancement (PRE)-based approach to visualize the conformational dynamics of loop 6 and to calculate conformational ensembles that explain the pH-gated opening and closing of the OmpG channel. The different loop conformers detected by the PRE ensemble calculations were validated by disulfide cross-linking of strategically engineered cysteines and electrophysiological single channel recordings. The results indicate a more dynamically regulated channel opening and closing than previously thought and reveal additional membrane-associated conformational ensembles at pH 6.3 and 7.0. We anticipate this approach to be generally applicable to detect and characterize functionally important conformational ensembles of membrane proteins.