화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.135, No.44, 16468-16477, 2013
Development of a New Method for Synthesis of Tandem Hairpin Pyrrole-Imidazole Polyamide Probes Targeting Human Telomeres
Pyrrole-imidazole (PI) polyamides bind to the minor groove of DNA in a sequence-specific manner without causing denaturation of DNA. To visualize telomeres specifically, tandem hairpin PI polyamides conjugated with a fluorescent dye have been synthesized, but the study of telomeres using these PI polyamides has not been reported because of difficulties synthesizing these tandem hairpin PI polyamides. To synthesize tandem hairpin PI polyamides more easily, we have developed new PI polyamide fragments and have used them as units in Fmoc solid-phase peptide synthesis. Using this new method, we synthesized four fluorescent polyamide probes for the human telomeric repeat TTAGGG, and we examined the binding affinities and specificities of the tandem hairpin PI polyamides, the UV-vis absorption and fluorescence spectra of the fluorescent polyamide probes, and telomere staining in mouse MC12 and human HeLa cells. The polyamides synthesized using the new method successfully targeted to human and mouse telomeres under mild conditions and allow easier labeling of telomeres in the cells while maintaining the telomere structure. Using the fluorescent polyamides, we demonstrated that the telomere length at a single telomere level is related to the abundance of TRF1 protein, a shelterin complex component in the telomere.