화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.135, No.46, 17547-17555, 2013
Universal Binding Behavior for Ionic Alkyl Surfactants with Oppositely Charged Polyelectrolytes
Oppositely charged polyelectrolyte surfactant mixtures are ubiquitous in biology and the basis of numerous consumer healthcare products. Despite their broad use, however, a rational approach to their formulation remains challenging because of the complicated association mechanisms. Through compilation and analysis of literature reports and our own research, we have developed a semiempirical correlation of the binding strength of surfactants to polyelectrolytes in salt-free mixtures as a function of the polyion linear charge density and the surfactant hydrophobicity. We have found that the cooperative binding strength increases as the square of the polyelectrolyte's linear charge density and in proportion to the surfactant's hydrophobicity, such that a quantitative relationship holds across a broad range of polyelectrolytes. Deviations from the correlation reveal the role of system-specific interactions not considered in the analysis. This engineering relationship aids in the rational design of oppositely charged polyelectrolyte-surfactant formulations for consumer products and biomedicines by enabling the prediction of binding strengths in polyelectrolyte-surfactant mixtures based on mesoscale parameters determined from the chemical composition.