화학공학소재연구정보센터
KAGAKU KOGAKU RONBUNSHU, Vol.39, No.5, 426-432, 2013
Change in Characteristics of Titania Nanoparticles during the Process of Dispersion, Agglomeration and Re-Dispersion with a Dual-Axis Beads-Mill
Titania nanoparticles were dispersed with a dual axis beads mill that enables nanoparticles to be dispersed with much lower energy than usual, and their dispersion characteristics were examined. In a recent study, titania nanoparticles were found to disperse to a primary nanoparticle size by evaluating the size and crystallinity of dispersed particles. In this study, the dispersed titania nanoparticles were further characterized by examining TEM, small angle X-ray scattering, zeta-potential, specific surface area and optical properties. TEM revealed that the dispersion of titania nanoparticles at low energy gave the primary particle size without crushing the crystals, while dispersion at higher energy gave rise to coagulation of crushed titania nanoparticles of around 10 nm in size. The large agglomerated nanoparticles were re-dispersed to around 10 nm by adding dispersant under the appropriate conditions to give a transparent titania slurry.