화학공학소재연구정보센터
SIAM Journal on Control and Optimization, Vol.51, No.5, 3592-3623, 2013
BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND OPTIMAL CONTROL OF MARKED POINT PROCESSES
We study a class of backward stochastic differential equations (BSDEs) driven by a random measure or, equivalently, by a marked point process. Under appropriate assumptions we prove well-posedness and continuous dependence of the solution on the data. We next address optimal control problems for point processes of general non-Markovian type and show that BSDEs can be used to prove existence of an optimal control and to represent the value function. Finally we introduce a Hamilton-Jacobi-Bellman equation, also stochastic and of backward type, for this class of control problems: when the state space is finite or countable we show that it admits a unique solution which identifies the (random) value function and can be represented by means of the BSDEs introduced above.