화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.5, 882-891, October, 1995
개미산 탈질에 의한 모의폐액내 Zr 및 Mo 분리제거 연구(II)
Removal of Zr and Mo from the simulated Radwaste solution by Denitration with Formic Acid(Ⅱ)
초록
본 연구는 개미산에 의한 탈질시 다량 발생되는 배기체의 처리 효율을 증진시키기 위한 탈질장치의 개선 및 고액분리시 고려되어야 할 침전물의 여과특성에 중점을 두어 수행하였다. 실험계로는 회분식, 반회분식 및 교반동반 반회분식을 각각 선정하여, 전 연구[1]에서 설정된 최적의 탈질조건, 즉 [HCOOH]/[HNO3]=1.5, 2.5시간, 90℃에서 배기체의 발생속도, 침전물의 여과특성 그리고 각 원소의 침전거동을 고찰하였다. 배기체의 발생속도는 회분식의 경우 반응시작 10∼15분 사이 약 0.68ℓ/min로 급격히 증가되었다가, 약 20분 후에는 0.05ℓ/min 이하로 감소하는데 반하여, 반회분식 또는 교반동반 반회분식의 경우는 약 50분 동안 0.06ℓ/min 이하로 거의 일정하게 유지되어, 반회분식이 양호한 것으로 나타났다. 여과특성에서는 회분식의 평균 여과 비저항(average filtration specific resistance)이 1.2×1011m/Kg, 반회분식이∼1012m/Kg으로 회분식이 우수한 것으로 나타났다. 또한 Zr 및 Mo의 침전 제거율에서는 실험계와 무관하게 Zr은 99%이상이었으며, Mo는 회분식에서 약 86% 정도로 다소 유리하나, 기타계와 거의 비슷한 수준이었다. 2성분계(Zr-Mo) 및 다성분계에서 형성된 각 침전물의 특성은 실험계 변화에 무관하게, 2성분계에서는 ZrMo2O7(OH)2(H2O)2의 결정물이었으며, 다성분계에서는 모두 무정형 (amorphous)으로 나타났다.
This study was performed in order to improve the denitration system for the effective treatment of off-gas evolved rapidly during denigration with formic acid, and to examine the filterability of slurry formed in denitration, which is a major parameter to be set up in the denigration process. Experiment system was selected the batch, semi-batch and semi-batch with mixing system, respectively. The off-gas evolution rate, the filterability of slurry, and the precipitation fractions of each element were considered with the changes of the system at the optimum condition, namely [HCOOH]/[HNO3]=1.5, 2.5hr and 90℃ of denigration, established previous study[1]. The gas evolution rate for the batch was about 0.68ℓ/min during 10∼20 minutes of denitration, while it decreased rapidly below 0.05ℓ/min after 20 minutes. As for the semi-batch and the semi-batch with mixing system, the rates were less than 0.06ℓ/min during 50 minutes. It is found that the systems of semi-batch type are most favorable in terms of off-gas evolution. The average filtration specific resistance for the batch and the semi-batch system were 1.2×1011m/Kg and ∼ 1012m/Kg, respectively. The batch system Is quite favorable in view of filterability of slurry. The precipitation fractions of Zr and Mo for the batch system were over 99% and 86%, respectively, but those of Zr and Mo with denitration system were not significant. Also, regardless of denitration system, the form of precipitate formed during denitration at two-component(Zr-Mo) and at multi-component system were crystal of ZrMo2O7(OH)2(H2O)2 and amorphous, respectively.
  1. Lee EH, Hwang DS, Kim KW, Shin YJ, Yoo JH, J. Korean Ind. Eng. Chem., 6(3), 404 (1995)
  2. Posey JC, "Process of the Recovery of Cm-242 from Nuclear Waste," ORNL-6787 (1980)
  3. Liljenzin JO, Radiochim. Acta, 35, 155 (1984)
  4. Song C, Glatz JP, He X, Bokelund H, Koch L, "Actinide Partitioning by Means of the TRPO Process," RECOD '94, London, U.K. (1994)
  5. Madic C, Blanc P, Berthon L, "Actinide Partitioning from High-level Liquid Waste using the DIAMEX Process," RECOD '94, London, U.K. (1994)
  6. Kubota M, Yamaguchi I, Morita Y, Kondo Y, Energy Agency, 117 (1993)
  7. 유재형, "군분리공정 기술개발," KAERI/RR-1322/94 (1994)
  8. Morita Y, Kubota M, "Behavior of Iron in Extraction Diisodecyl Phosphoric Acid," JAERI-M 89-139 (1989)
  9. Bradley RF, Goodlett CB, "Denitration of Nitric Acid Solutions by Formic Acid," DP-1299 (1972)
  10. Ruth BF, Ind. Eng. Chem., 38, 564 (1946) 
  11. Orebaugh EG, "Denitration of Savannah River Plant Waste Streams," DP-1417 (1976)
  12. Anderson PA, Nucl. Tech., 47, 173 (1980)
  13. Izumida T, Kawamura F, J. Nucl. Sci. Technol., 27, 267 (1990)
  14. Music S, Ristic M, Popovic S, J. Radioanal. Nucl. Chem. Art., 134, 353 (1989) 
  15. Music S, Gotic M, Popovic S, Grzeta B, J. Radioanal. Nucl. Chem. Art., 116, 141 (1987)