Rheologica Acta, Vol.52, No.10-12, 949-961, 2013
Effects of the extensional rate on two-dimensional turbulence of semi-dilute polymer solution flows
An experimental study has been performed to investigate the relationship between the extensional viscosity of polymers and the turbulent drag reduction. In order to obtain the flow which is mostly dominated by extensional flow, two-dimensional (2D) grid turbulence made by flowing soap films was used. Extensional rate added to the flow was controlled by changing the conformation of the grid. Polyethylene oxide, as a flexible polymer, and hydroxypropyl cellulose, as a rigid rod-like polymer were added to the flow. Several extensional rates affect polymer behaviors, which induce different effects. Drag reduction effects of polymers under several extensional rates were visualized and analyzed by image processing. Rheological properties of the polymer solutions were also measured by a rheometer. The results indicated that the mechanisms of energy transfer are different in the streamwise and normal directions. The critical concentration to observe drag reduction effects in 2D turbulence was changed by the extensional rate. When extensional rate is higher, the effects were started to observe from lower concentration. These results were confirmed to correspond to the drag reduction effects obtained by classical pressure drop experiments in a pipe flow.
Keywords:Extensional rate;Extensional viscosity;Drag reduction;Polymer solution;Two-dimensional turbulence;Flow visualization