화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.5, 892-903, October, 1995
Sol-Gel Silica Matrix에 고정화한 효소전극의 작동 특성
The Sensing Characteristics of the Enzyme Electrodes Immobilized in Sol-Gel Silica Matrix
초록
Sol-gel 방법을 이용하여 polymethyl siloxane(PMSO)층에 효소를 고정화한 효소전극을 제작하였다. Glucose oxidase(GOD)/PMSO/Pt 전극은 글루코스에 대하여 재현성이 우수한 전류특성을 보였으며, 글루코스 농도 약 45mM의 범위까지 직선적인 감응 특성을 나타내었다. 전극제조의 여러 공정변수 중 전구체인 methyl trimethoxy silane(MTMS)의 가수분해 과정에서 사용한 H2/MTMS(mol/mol) 비(R값)가 효소전극의 특성에 가장 큰 영향을 주었다. R값이 당량(3.0)보다 클 때와 그렇지 않은 경우를 대비하여 볼 때, 선형성은 당량 이하(R≤3.0)일 때에, 저장 안정성은 당량 이상(R>3.0)인 경우에 더 우수하였다. FT-IR 결과로부터 R값이 클수록 축중합이 많이 된 막이 얻어짐을 확인하였다. 또한, R값이 당량 이하인 경우 저장 시간에 따라 신호가 감소함과 동시에 센서의 선형성과 응답시간이 증가함이 관찰되었다. 이로부터 R값이 적은 경우에는 효소막 제조시 축중합 정도가 적어서 센서의 저장 기간 중에도 축중합이 계속 진행되며, 따라서 글루코스의 물질전달 속도가 감소하므로 응답 시간이 길어지고 전류의 크기도 감소한다고 설명하였다. 같은 방법으로 alcohol oxidase(AOD) 고정화 전극을 제조하여 감응 실험을 한 결과 에탄올과 메탄올에 대해서도 재현성이 우수한 감응 특성을 얻을 수 있었다.
Enzyme electrodes were fabricated by entrapping enzymes in the polymethylsiloxane(PMSO) matrix prepared by sol-gel method. The GOD-immobilized PMSO/Pt electrodes showed reproducible current signals to glucose and the linearly responding concentration range of glucose was up to 45mM. The R values (H2O/MTMS molar ratio) employed in the hydrolysis of MTMS had the most significant effects on the sensing properties of the resulting enzyme electrodes. With the R value of lower than the stoichiometric value(3.0), the enzyme electrodes showed better linearity than those for R> 3.0. But the storage stability was better for R>3.0. FT-IR data indicated that the degree of condensation of the siloxane group was proportional to the R value. In case of R≤3.0, the linearity and response time increased with a reduction of the current signals. From the results, it was interpreted that when R≤3.0 the condensation reaction is not completed, thus the reaction proceeds further during the storage. As a result of the progressive condensation reaction the matrices become rigider and less porous, i.e. the diffusion of glucose becomes more difficult, resulting in a longer response time and smaller current signals. Similarly, the alcohol oxidase-immobilized PMSO/Pt electrodes were prepared, which showed reproducible current signals to methanol and ethanol.
  1. Lowry JP, McAteer K, El-Atrash SS, Duff A, O'Neill RD, Anal. Chem., 66, 1754 (1994) 
  2. Brooks SL, Higgins IJ, Newman JD, Turner APF, Enzyme Microb. Technol., 13, 946 (1991) 
  3. Holst O, Hakanson H, Miyabayashi A, Mattiasson B, Appl. Microbiol. Biotechnol., 28, 32 (1988) 
  4. Rolfe P, Martin MJ, Chem. Brit., 1026 (1988)
  5. Velho GD, Reach G, Thevenot DR, "Biosensors; Fundamentals and Applications," Ed. by A.P.F. Turner, I. Karube, G.S. Wilson, Oxford University Press, Oxford, Chap. 22 (1987)
  6. Malistera C, Palmisano F, Torsi L, Zambonin PG, Anal. Chem., 62, 2735 (1990) 
  7. Oyama N, Ohsaka T, Ikeda S, J. Macromol. Sci.-Chem., A27, 1203 (1990)
  8. Thevenot DR, Sternberg R, Coulet PR, Laurent J, Gautheron DC, Anal. Chem., 51, 96 (1978) 
  9. Yamauchi S, Ikariyama Y, Yaoita M, "Chemical Sensor Technology," 2, 205, Kodansha, Tokyo (1989)
  10. Im DM, Jang DH, Oh SM, Sens. Actuators B-Chem., 24, 149 (1995) 
  11. Dave BC, Dunn B, Valentine JS, Zink JI, Anal. Chem., 66, 1120 (1994)
  12. Zusman R, Rottman C, Ottolenghi M, Avnir D, J. Non-Cryst. Solids, 122, 107 (1990) 
  13. Kraus SC, Czolk R, Reichert J, Ache HJ, Sens. Actuators B-Chem., 15-16, 199 (1993)
  14. Audebert P, Demaille C, Sanchez C, Chem. Mater., 5, 911 (1993) 
  15. Tsionsky M, Gun G, Glezer V, Lev O, Anal. Chem., 66, 1747 (1994) 
  16. Narang U, Prasad PN, Bright FV, Ramanathan K, Kumar ND, Malhotra BD, Kamalasanan MN, Chandra S, Anal. Chem., 66, 3139 (1994) 
  17. Brinker CJ, J. Non-Cryst. Solids, 100, 31 (1988) 
  18. Haruvy Y, Webber SE, Chem. Mater., 3, 501 (1991) 
  19. Adachi T, Sakka S, J. Non-Cryst. Solids, 99, 110 (1988)
  20. Avnir D, Kaufman VR, Reisfeld R, J. Non-Cryst. Solids, 74, 395 (1985) 
  21. Feldberg SW, "Electroanalytical Chemistry," Ed. by A.J. Bard, 3, Chap. 4, Marcel Dekker, New York (1969)
  22. Maloy JT, Prater KB, Bard AJ, J. Am. Chem. Soc., 93, 5959 (1971) 
  23. Lawson RJ, Maloy JT, Anal. Chem., 46, 559 (1974) 
  24. Bartlett PN, Pratt KFE, Biosensors Bioelectronics, 8, 451 (1993) 
  25. Pons S, "Electroanalytical Chemistry," Ed. by A.J. Bard, 13, Marcel Dekker, New York (1984)
  26. Woodward J, "Immobilized Cells and Enzymes.; A Practical Approach," 78, IRL Press, Oxford (1985)
  27. Silverstein RM, Bassler GC, Morrill TC, "Spectrometric Identification of Organic Compounds," 3rd Ed., Chap. 3, John Wiley & Sons, New York (1974)
  28. Colthup NB, Daly LH, Wiberley SE, "Introduction to Infrared and Raman Spectroscopy," 2nd Ed., Chap. 12, Academic Press, New York (1975)
  29. Yang L, Saavedra SS, Armstrong NR, Hayes J, Anal. Chem., 66, 1254 (1994)