Propellants Explosives Pyrotechnics, Vol.38, No.5, 605-610, 2013
Effect of Solids Loading on Resonant Mixed Al-Bi2O3 Nanothermite Powders
Sensitive nanoenergetic powders, such as nanothermites, have traditionally been processed by ultrasonic mixing of very low solids loaded suspensions in organic solvents, which has restricted their use and application due to high solvent content and associated handling issues. In this work, we report on the performance and mixing quality of nanothermite mixtures prepared in a LabRAM resonant mixer at high solids loadings as compared to ultrasonic mixing. Specifically, the aluminum-bismuth(III) oxide (Al/Bi2O3) system processed in the polar solvent N,N-dimethylformamide (DMF) was investigated. It was found that the performance and overall quality of mixing was strongly correlated to the volumetric solids loading during processing; increasing volumetric solids loading decreases separation of particles, leading to more particle interaction and more intimate mixing. The measured performance of this system processed at 30vol-% was similar to traditionally ultrasonicated mixtures. Increasing the solids loading above 30vol-% yielded diminishing returns in performance and may introduce additional safety concerns since dry powders are very sensitive to electrostatic discharge. This mixing approach uses significantly less solvent than traditional ultrasonic mixing, results in a higher density final material, and is amenable to scaling. In addition, solvent wetted nanothermite mixed at 30vol-% solids loading can be mixed and deposited from a single applicator and was observed to be over five orders of magnitude less sensitive to electrostatic discharge than dry powders. This relative insensitivity enables the safe deposition of high density nanothermite ink onto devices.