Korean Journal of Chemical Engineering, Vol.31, No.1, 29-36, January, 2014
Additive effect of Ce, Mo and K to nickel-cobalt aluminate supported solid oxide fuel cell for direct internal reforming of methane
E-mail:
Direct internal reforming of methane (steam/carbon=0.031, 850 ℃) is tested using button cells of Ni-YSZ/YSZ/LSM in which the anode layer is supported either on Ni-YSZ or on Ni-CoAl2O4. The Ni-CoAl2O4 supported cell shows little degradation with operating time, as a result of higher resistance against carbon deposition, whereas the Ni-YSZ supported cell deactivates quickly and suffers fracture in 50 h. Upon incorporation of additives such as K, Ce, or Mo into the Ni-CoAl2O4 support, cells with 0.5 wt% CeO2 exhibit the best stable performance as a result of reduced coke formation. Cells with 0.5 wt% Mo exhibit the lowest performance. Although no carbon deposit is detected in the cells with K2CO3 additives, their performance is worse than that in the CeO2 case, and, in constant-current mode, there is a sudden voltage drop to zero after a certain period of time; this time becomes shorter with increasing K content. The injection of potassium into the anode side facilitates the generation of OH. and CO3 2- in the anode and promotes the diffusion of these ions to the cathode. Increased polarization resistance at the cathode and increased electrolyte resistance result in such a sudden failure.
Keywords:Solid-oxide Fuel Cell;Nickel-cobalt Aluminate Support;Direct Internal Reforming;Effect of Cerium;Molybdenum and Potassium
- Lee AL, Zabransky RF, Huber WJ, Ind. Eng. Chem. Res., 29, 766 (1990)
- Gavrielatos I, Drakopoulos V, Neophytides SG, J. Catal., 259(1), 75 (2008)
- Ormerod RM, Stud. Surf. Sci. Catal., 122, 35 (1999)
- Triantafyllopoulos NC, Neophytides SG, J. Catal., 217(2), 324 (2003)
- Borowiecki T, Golebiowski A, Stasinska B, Appl. Catal. A: Gen., 153(1-2), 141 (1997)
- Finnerty CM, Coe NJ, Cunningham RH, Ormerod RM, Catal. Today, 46(2-3), 137 (1998)
- Belyaev VD, Politova TI, Marina OA, Sobyanin VA, Appl. Catal. A: Gen., 133(1), 47 (1995)
- Lin YB, Zhan ZL, Barnett SA, J. Power Sources, 158(2), 1313 (2006)
- Laosiripojana N, Assabumrungrat S, Appl. Catal. B: Environ., 66(1-2), 29 (2006)
- Kwak BH, Youn HK, Chung JS, J. Power Sources, 185(2), 633 (2008)
- Laosiripojana N, Assabumrungrat S, Appl. Catal. B: Environ., 60(1-2), 107 (2005)
- Laosiripojana N, Sangtongkitcharoen W, Assabumrungrat S, Fuel, 85(3), 323 (2006)
- Laosiripojana N, Assabumrungrat S, Appl. Catal. A: Gen., 290(1-2), 200 (2005)
- Rostrupnielsen JR, Christiansen LJ, Appl. Catal. A: Gen., 126(2), 381 (1995)
- Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ, Appl. Catal. A: Gen., 264(2), 169 (2004)
- Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ, Appl. Catal. A: Gen., 301(1), 9 (2006)
- Graf PO, Mojet BL, Lefferts L, Appl. Catal. A: Gen., 346(1-2), 90 (2008)
- Hardiman KM, Cooper CG, Adesina AA, Ind. Eng. Chem. Res., 43(19), 6006 (2004)
- Opoku-Gyamfi K, Tafrechi ZM, Adesina AA, React.Kinet. Catal. Lett., 64, 229 (1998)
- Enger BC, Lodeng R, Holmen A, Appl. Catal. A: Gen., 346(1-2), 1 (2008)
- Al-Ubaid A, Wolf EE, Appl. Catal., 40, 73 (1998)
- Mogensen M, Sammes NM, Tompsett GA, Solid State Ion., 129(1-4), 63 (2000)
- Fornasiero P, Balducci G, Dimonte R, Kaspar J, Sergo V, Gubitosa G, Ferrero A, Graziani M, J. Catal., 164(1), 173 (1996)
- Miki T, Ogawa T, Haneda M, Kakuta N, Ueno A, Tateishi S, Matsuura S, Sato M, J. Phys. Chem., 94, 6464 (1990)
- Lang ND, Holloway S, Norskov JK, Science., 236, 403 (1987)
- Raz S, Sasaki K, Maier J, Riess I, Solid State Ion., 143(2), 181 (2001)
- Mizusaki J, Tagawa H, Saito T, Yamamura T, Kamitani K, Hirano K, Ehara S, Takagi T, Hikita T, Ippommatsu M, Nakagawa S, Hashimoto K, Solid State Ionics., 70/71, 52 (1994)
- Dicks AL, J. Power Sources., 61, 113 (1996)
- Praliaud H, Dalmon JA, Mirodatos C, Martin GA, J. Catal., 97, 344 (1986)
- Rostrupnielsen JR, Christiansen LJ, Appl. Catal. A: Gen., 126(2), 381 (1995)