화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.1, 68-73, January, 2014
On the reason why acid treatment of biomass enhances the biosorption capacity of cationic pollutants
E-mail:
The present work is aimed at understanding the effect of acid treatment and demonstrating the reason for its effect. For this, Corynebacterium glutamicum biomass was used as a model biomass. Two cationic (cadmium and Methylene Blue) and one anionic (Reactive Red 4) pollutants were used to evaluate the sorption capacity by the biomass. Isotherm experiments showed that acid treatment of the biomass increased the uptake of the cationic pollutants, but decreased that of the anionic pollutant. Through the results of FTIR and potentiometric titrations, it was found that carboxyl groups on the biomass increased after acid treatment. The carboxyl groups seem to be generated likely through hydrolysis of esters in the biomass under the acidic condition. Therefore, increase of the carboxyl groups provided the binding sites for cationic pollutants, whereas it may interfere with the binding of anionic pollutants.
  1. Yu B, Zhang Y, Shukla A, Shukla SS, Dorris KL, J. Hazard. Mater., 80(1-3), 33 (2000)
  2. Nigam P, Armour G, Banat IM, Singh D, Marchant R, Bioresour. Technol., 72(3), 219 (2000)
  3. Solis M, Solis A, Perez HI, Manjarrez N, Flores M, Process Biochem., 47, 1723 (2012)
  4. Davis TA, Volesky B, Mucci A, Water Res., 37, 4311 (2003)
  5. Aksu Z, Process Biochem., 40, 997 (2005)
  6. Won SW, Choi SB, Han MH, Yun YS, Korean Chem. Eng. Res., 43(4), 542 (2005)
  7. Mao JA, Won SW, Vijayaraghavan K, Yun YS, Chem. Eng. J., 162(2), 662 (2010)
  8. Umali LJ, Duncan JR, Burgess JE, Biotechnol. Lett., 28(1), 45 (2006)
  9. Vijayaraghavna K, Yun YS, Biotechnol. Adv., 26, 266 (2008)
  10. Mehta SK, Gaur JP, Crit. Rev. Biotechnol., 25, 113 (2005)
  11. Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA, Crit. Rev. Biotechnol., 26, 223 (2006)
  12. Kumar D, Gaur JP, Bioresour. Technol., 102(3), 2529 (2011)
  13. Yun YS, Park D, Park JM, Volesky B, Environ. Sci. Technol., 35, 4353 (2001)
  14. Pagnanelli F, Veglio F, Toro L, Chemosphere., 54, 905 (2004)
  15. Lodeiro P, Cordero B, Grille Z, Herrero R, de Vicente MES, Biotechnol. Bioeng., 88(2), 237 (2004)
  16. Mao J, Won SW, Yun YS, Ind. Eng. Chem. Res., 52(19), 6446 (2013)
  17. Vijayaraghavan K, Mao J, Yun YS, Bioresour. Technol., 99(8), 2864 (2008)
  18. Han MH, Yun YS, Biochem. Eng. J., 36, 2 (2007)
  19. Won SW, Choi SB, Yun YS, Colloid Surf. A-Physicochem.Eng. Asp., 262, 175 (2005)
  20. Mao J, Won SW, Yun YS, World J. Microbiol. Biotechnol., 25, 1259 (2009)
  21. Velazquez-Jimenez LH, Pavlick A, Rangel-Mendez JR, Ind.Crop. Prod., 43, 200 (2013)
  22. Deng S, Ting YP, Environ. Sci. Technol., 39, 8490 (2005)
  23. Akar ST, Gorgulu A, Kaynak Z, Anilan B, Akar T, Chem. Eng. J., 148(1), 26 (2009)
  24. Yee N, Benning LG, Phoenix VR, Ferris FG, Environ. Sci.Technol., 38, 775 (2004)
  25. Won SW, Choi SB, Yun YS, Biochem. Eng. J., 28, 208 (2006)
  26. Pagnanelli F, Petrangeli Papini M, Toro L, Trifoni M, Veglio F, Environ. Sci. Technol., 34, 2773 (2000)
  27. Padmavathy V, Vasudevan P, Dhingra SC, Chemosphere., 52, 1807 (2003)
  28. Ashkenazy R, Gottlieb L, Yannai S, Biotechnol. Bioeng., 55(1), 1 (1997)
  29. Schiewer S, Volesky B, in Environmental microbe-metal interactions, Lovley DR Ed., ASM Press, Washington, DC (2000)
  30. Hunt S, in Immobilization of ions by biosorption, Eccles H, Hunt S, Eds., Ellis Horwood, Chichester, UK (1986)
  31. Pratibha R, Malar P, Rajapriya T, Balapoornima S, Ponnusami V, Desalination, 264(1-2), 102 (2010)