Korean Journal of Chemical Engineering, Vol.31, No.1, 142-154, January, 2014
Adsorption of Cr (VI) on synthetic hematite (α-Fe2O3) nanoparticles of different morphologies
E-mail:
The adsorption of Cr (VI) from aqueous solution onto nanoparticles hematite (α-Fe2O3) of different morphologies synthesized by acid hydrolysis, transformation of ferrihydrite, sol gel methods has been investigated. The hematite particle sizes were in the range 15.69-85.84 nm and exhibiting different morphologies such as hexagonal, plate-like, nano-cubes, sub-rounded and spherical. The maximum adsorption capacity of Cr (VI) was found to be in the range 6.33-200 mgg.1 for all hematite samples. The kinetics of sorption was rapid, reaching equilibrium at 45-240 minutes. Sorption kinetics and equilibria followed pseudo-second order and Langmuir adsorption isotherm models. The rate constants were in the range 0.996-2.37×10^(-2) g/mg/min for all samples. The maximum adsorption was attained at pH 3.0, while adsorption decreased as the pH increased from pH 3.0 to 10.0. The study revealed that the hematite with plate-like morphology has the highest adsorption capacity. The sorption process has been found to be feasible following a chemisorption process, and adsorption of Cr (VI) onto hematite nanoparticles was by inner sphere surface complexation due to low desorption efficiency in the range 9.54-53.4%. However, the result of ionic strength revealed that the reaction was by outer sphere complexation. This study showed that morphologies play a vital role in the adsorption capacities of samples of hematite in the removal of Cr (VI) from aqueous solution.
- Gao BJ, Li YB, Chen ZP, Chem. Eng. J., 150(2-3), 337 (2009)
- Chirwa EMN, Wang YT, Environ. Sci. Technol., 31, 1446 (1997)
- Barai A, Engelken RD, Environ. Sci. Pollution., 5, 121 (2002)
- Eary LE, Rai D, Environ. Sci. Technol., 22, 972 (1988)
- Ghurye GL, Clifford DA, Tripp AR, J. Am. Water Works Assoc., 91, 85 (1999)
- Clifford DA, Adsorption and ion exchange, in: F.W. Pontius (Ed.), Water Quality and Treatment: A Handbook of Community Water Supplies, McGraw-Hill, New York, 561 (1990)
- Wang X, Chen XY, Ma XC, Zheng HG, Ji MR, Zhang Z, Chem. Phys. Lett., 384(4-6), 391 (2004)
- McGraw-Hill Encyclopedia of Science and Technology New York, 8, 185 (2002)
- Singh DB, Gupta GS, Prasad G, Rupainwar DC, J. Environ. Sci. Health., A28, 1813 (1993)
- Brown GE, Chambers SA, Amonette JE, Rustad JR, Kendelewicz T, Doyle CS, Grolimund D, Foster-Mills NS, Joyce SA, Thevuthasan S, J. Conference Abstract., 5, 253 (2000)
- Ajouyed O, Hurel C, Ammari M, Ben Allal L, Marmier N, J. Hazard. Mater., 174(1-3), 616 (2010)
- Schwertmann U, Cornell RM, Iron oxide in the laboratory: preparation and characterization, Wiley-VCH Weinheim, Germany, 1 (1991)
- Raming TP, Winnubst AJA, van Kats CM, Philipse AP, J. Colloid Interface Sci., 249(2), 346 (2002)
- Sugimoto T, Khan MM, Muramatsu A, Colloids Surf. A: Physicochem. Eng. Aspects., 70, 167 (1993)
- International Institute of Tropical Agriculture (IITA), Selected Methods for Soil and Plant Analysis. Manual Series, 1, 3 (1979)
- Hameed BH, Krishni RR, Sata SA, J. Hazard. Mater., 162(1), 305 (2009)
- Noh JS, Schwarz J, J. Colloid Interface Sci., 130, 157 (1989)
- Tadic M, Citakovic N, Panyam M, Stojanovic Z, Markoviv D, Spasojevic V, J. Alloys Compds., 509, 7639 (2011)
- Adegoke HI, Adekola FA, Colloid J., 74, 420 (2012)
- Goh KH, Lim TT, Banas A, Dong ZL, J. Hazard. Mater., 179(1-3), 818 (2010)
- Mamindy-Pajany Y, Hurel C, Marmier N, Romeo M, Desalination., 281, 93 (2011)
- Kosmulski M, J. Colloid Interface Sci., 253(1), 77 (2002)
- Subbaiah MV, Yuvaraya G, Vijaya Y, Krishnaiah A, J. Taiwan List. Chem. Eng., 42, 965 (2011)
- Qin W, Yang C, Yi R, Gao G, J. Nanomaterials., DOI:10.11555/2011/159259 (2011)
- Wang LL, Gao LA, J. Colloid Interface Sci., 349(2), 519 (2010)
- Apte SK, Naik SD, Sonawane RS, Kale BB, J. Am. Ceram. Soc., 90(2), 412 (2007)
- Gotic M, Music S, Popovic S, Sekovanic L, Croatica, Chem.Acta., 81, 569 (2008)
- Ruan HD, Frost RI, Kloprogge JT, Duong L, Spectrochim.Acta Part A., 58, 967 (2000)
- Iglesias JE, Serna CJ, Miner. Petrogr. Acta., 29A, 363 (1985)
- Simeonidis K, Gkinis T, Tresintsi S, Martinez-Boubeta C, Vourlias G, Tsiaoussis I, Stavropoulos G, Mitrakas M, Angelakeris M, Chem. Eng. J., 168(3), 1008 (2011)
- Hu J, Lo IMC, Chen GH, Langmuir, 21(24), 11173 (2005)
- Fang J, Gu Z, Gang D, Liu C, Ilton ES, Deng B, Environ.Sci., 44, 4748 (2007)
- Imai A, Gloyna EF, Water Res., 24, 1143 (1990)
- Srinivas P, Shashikant R, Munjunatha GS, J. Environ. Sci.Health., A27, 2227 (1992)
- Ajmal A, Khan AH, Ahmad S, Ahmad A, Water Res., 32, 3085 (1998)
- Yu B, Zhang YH, Shukla A, Shukla SS, Dorris KL, J. Hazard.Mater., 384, 83 (2001)
- Namasivayam C, Yamuna RT, Chemosphere., 30, 561 (1995)
- Oliveira DQL, Goncalves M, Oliveira LCA, Guilherme LRG, J. Hazard. Mater., 151(1), 280 (2008)
- Weng CH, Sharma YC, Chu SH, J. Hazard. Mater., 155(1-2), 65 (2008)
- Namasivayam C, Sureshkumar MV, Bioresour. Technol., 99(7), 2218 (2008)
- Arai Y, Elzinga EJ, Sparks DL, J. Colloid Interface Sci., 235(1), 80 (2001)
- Ouazen N, Sahmoune MN, Int. J. Chem. Rea. Eng. Article., A151, 1 (2010)
- Uysal M, Ar I, J. Hazard. Mater., 149(2), 482 (2007)
- Chien SH, Clayton WR, Sci. Soc. Am. J., 44, 265 (1980)
- Basha S, Murthy ZVP, Process Biochem., 42, 1521 (2007)
- Temkin MI, Pyzhev V, Acta Physiochemica, USSR 12, 327 (1940)
- Hu B, Cheng W, Zhang H, Yang S, J. Nucl. Mater., 406, 263 (2010)
- Hsia TS, Lo SL, Lin CF, Lee DY, Colloids Surf. A., 85, 1 (1994)
- Pakade V, Cukrowska E, Darkwa J, Torto N, Chimuka L, Water SA., 37, 529 (2011)
- Goudarzian N, Ghahramani P, Hossini S, Polym. Int., 36, 61 (1996)
- Miller FA, Wilkins CH, Anal. Chem., 24, 1253 (1952)
- Strawn DG, Sparks DL, Soc. Sci. Soc. Am. J., 64, 144 (2000)