화학공학소재연구정보센터
Nature Nanotechnology, Vol.2, No.8, 486-489, 2007
Evaporation and deposition of alkyl-capped silicon nanocrystals in ultrahigh vacuum
Nanocrystals are under active investigation because of their interesting size- dependent properties(1,2) and potential applications(3-5). Silicon nanocrystals have been studied for possible uses in optoelectronics(6), and may be relevant to the understanding of natural processes such as lightning strikes(7). Gas-phase methods can be used to prepare nanocrystals, and mass spectrometric techniques have been used to analyse Au-8,(9) and CdSe clusters(10). However, it is difficult to study nanocrystals by such methods unless they are synthesized in the gas phase(11). In particular, pre-prepared nanocrystals are generally difficult to sublime without decomposition. Here we report the observation that films of alkyl-capped silicon nanocrystals evaporate upon heating in ultrahigh vacuum at 200 degrees C, and the vapour of intact nanocrystals can be collected on a variety of solid substrates. This effect may be useful for the controlled preparation of new quantum-confined silicon structures and could facilitate their mass spectroscopic study and size- selection(12).