화학공학소재연구정보센터
Nature Nanotechnology, Vol.5, No.12, 853-857, 2010
Highly conductive, printable and stretchable composite films of carbon nanotubes and silver
Conductive films that are both stretchable and flexible could have applications in electronic devices(1,2), sensors(3,4), actuators(5) and speakers(6). A substantial amount of research has been carried out on conductive polymer composites(7), metal electrode-integrated rubber substrates(8-10) and materials based on carbon nanotubes and graphene(1,2,11-13). Here we present highly conductive, printable and stretchable hybrid composites composed of micrometre-sized silver flakes and multiwalled carbon nanotubes decorated with self-assembled silver nanoparticles. The nanotubes were used as one-dimensional, flexible and conductive scaffolds to construct effective electrical networks among the silver flakes. The nanocomposites, which included polyvinylidenefluoride copolymer, were created with a hot-rolling technique, and the maximum conductivities of the hybrid silver-nanotube composites were 5,710 S cm(-1) at 0% strain and 20 S cm(-1) at 140% strain, at which point the film ruptured. Three-dimensional percolation theory reveals that Poisson's ratio for the composite is a key parameter in determining how the conductivity changes upon stretching.